AFRL-IF-RS-TR-2000-105
Final Technical Report
July 2000

L > _

SPACE-TIME ADAPTIVE PROCESSING ON
COMMERCIAL HIGH-PERFORMANCE
COMPUTERS

Cornell University

Sponsored by
Defense Advanced Research Projects Agency

DARPA Order No. C253

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE

ROME, NEW YORK
DTIC QUALITY INcrrormp 4

20000925 159

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,

" including foreign nations.

AFRL-IF-RS-TR-2000-105 has been reviewed and is approved for publication.

APPROVED: W é/z/

RALPH KOHLER
Project Engineer

FOR THE DIRECTOR: % féa /Q, éz.

NORTHRUP FOWLER, Technical Advisor
Information Technology Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTC, 26 Electronic Pky, Rome, NY 13441-4514.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

SPACE-TIME ADAPTIVE PROCESSING ON COMMERCIAL HIGH-
PERFORMANCE COMPUTERS

Adam W. Bojanczyk

Contractor: Cornell University

Contract Number: F30602-95-1-0016

Effective Date of Contract: 12 April 1995

Contract Expiration Date: 30 June 1999

Short Title of Work: Space-Time Adaptive Processing on
Commercial High-Performance
Computers

Period of Work Covered: Apr 95 —Jun 99

Principal Investigator: Andrew W. Bojanczyk
Phone: (607) 255-4296

AFRL Project Engineer: Ralph Kohler
Phone: (315) 330-2016

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
This research was supported by the Defense Advanced Research

Projects Agency of the Department of Defense and was monitored
by Ralph Kohler, AFRL/IFTC, 26 Electronic Pky, Rome, NY.

Form Approved
REPORT DOCUMENTATION PAGE oM o188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for ing il ions, ing existing data sources,
ini d, and g and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

gathering and mair g the data d p
collection of information, including suggesti for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project {0704-0188), Washington, DC 20503,
7. AGENCY USE ONLY [Leave blank] | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
July 2000 Final Apr95- Jun99
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
SPACE-TIME ADAPTIVE PROCESSING ON COMMERCIAL o
HIGH-PERFORMANCE COMPUTERS G -F30602-95-1-0016
PE - 62301E
6. AUTHOR(S) PR - C253
Adam W. Bojanczyk TA - 01
WU -P1
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Cornell University REPORT NUMBER

School of Electrical Engineering
335 Frank H.T. Rhodes Hall
Ithaca, NY 14853-3801

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSIES) 10. SPONSORING/MONITORING
Air Force Research Laboratory/IFTC Defense Advanced Research AGENCY REPORT NUMBER
26 Electronic Parkway Projects Agency

Rome NY 13441-4514 3701 North Fairfax Drive AFRL-IF-RS-TR-2000-105

Arlington, VA 22203~-1714

11. SUPPLEMENTARY NOTES
Air Force Research Laboratory Project Engineer: Ralph Kohler/IFTC/(315)330-2016

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for Public Release, Distribution Unlimited

13, ABSTRACT (Maximum 200 words)

This project consisted of building a portable parallel library for the space-time adaptive processing (STAP) problem.
Portability was achieved by using standard like BLAS, LAPACK, SCALAPACK and MPI. The library simplifies
implementation of STAP applications on different high-performance parallel computers, allowing rapid prototyping of
parallel STAP systems. The library includes common to STAP communication and computation procedure. All library
routines take as input 3D data cubes, and produce as outputs also 3D cubes. Two user manuals, one describing the data
distributions library, and the other describing the STAP algorithms constraction were developed for this project.

74. SUBJECT TERMS 15. NUMBER OF PAGES
Parallel C Algorithms, ALPS library, SplitStaggeredCube function, Pri-Staggered SubCubes, 92
FullUpdateStap, Data Cube, Block Cyclic Data Distribution 16. PRICE CODE
7. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION [20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

Standard Form 208 gﬁ&v. 2-89) (EG)

Prescribed by ANSI Std. 23
Designed using Perform Pro, WHS/DIOR, Oct 94

TABLE OF CONTENTS

I. Administrative Informationcooviiiiiiriiiiii e

II. Technical REPOItvurniieitern ettt e et r e v ve et eeteen e e b eneanns

Appendix A — STAP Algorithm Construction............cccoeviiviiiiviiiiiiii e eieens

Appendix B — ALPS Parallel Libraries for Three-Dimensional Data Redistribution........

I. Adininistrntive Information

Agreement No: F30602-95-1-0016
Darpa order' number C253

Total Amount $264,347.00

Start Date: . April 12, 1995
End Date: ~ April 11, 1998

No cost extension: December 31, 1999
Principal Investigator Adam W. Bojanczyk
Level of PI participation:

Billed: 10%

Unbilled: 10%

Address Cornell Unjversity

School of Electrical Engineering

335 Frank H.T. Rhodes Hall

Ithaca, NY 14853-3801

(607) 255 4296

(607) 255 9072

adamb@ee.cornell.edu
http://www.ee.cornell.edu/~adamb/STAP.html.

I1. Technical Report

(a) Description of the project. '

In this project a portable parallel library for the space-time adaptive processing (STAP) problem
_ was built. Portability was achieved by using standard like BLAS, LAPACK, SCALAPACK and MPIL.
The library simplifies implementation of STAP applications oun different high-performance parallel
computers, allowing rapid prototyping of parallel STAP systcms.

The library includes common to STAP communication and computation procedure. These procc-
dures form basic building blocks from which a parallel STAP application can be built. The building
blocks are divide into data redistribulion and computational blocks. They are implemented with
standard BLAS, ScaLAPACK, LAPACK, and MPI routines. Each building block has several imple-
mentations correspouding to different parallel data distributions and machine-specific parameters.

All library routines take as input 3D data cubes, and produce as outputs also 3D cubes. STAP
systems are built as sequences of calls to the redistribution and computation routines, all operating on
3D data cubes. :

Two manualg, one describing the data distributions library, and the other describing the STAP

algorithms constraction, are included with this final report. The software packaged as a tar file can be
downloaded from our web site.

(b) Publications.

Towards a Portable Parallel Library for Space-Time Adaptive Methods, J. Lebak, . Durie and A.W.
Bojanczyk, Cornell Theory Center Technical Report, Cornell University, June 1996, (Available in a
postscript format from http://vwvwv.tc.cornell. gdu/Reaearch/Tech.Reports/).

Portable Porallel Subroutines for Space-Time Adaptive Processing, PhD Dissertation, J.M. Lebak, Jan-
uary 1997.

Automated Modeling of Parallel Algorithms for Performance Optimization and Prediction, R. Durie
and A. Bojanczyk, in the Proccedings of the Eighth STAM Conference for Parallel Processing for
Scientific Computing, Minneapolis, MN, March 14-17, 1997, (Also available in a postscript format
from http://wwv.ee.cornell.edu/"adamb/STAP/STAP.html).

Multi-Instance Parallel Libraries for Three Dimensional Dala Redistribution, MS thesis, W. Kostis,
August 1998.

Some Improvements to Parallel Three Dzmemzonal Data Redzstnbutwn Library, MEng thesis, R.
Weitkunat, January 1999.

Design and Performance Eveluction of a Portable Parallel Library for Spece-Time Adeptive Methods,
J. Lebak and A. Bojanczyk, IEEE Transactions on Parallel and Distributed Systems, March 2000, to
appear.

(c) Professional personnel.

In addition to partial support for the Principal Investigator, the budget included full suppaort for one
graduate student. Over the course of the project, the following students were partially supported by
this grant: ’

James Lebak, PhD in January 1997

Bob Durie, PhD in progress

Will Kostis, MSc in August 1998

Richard Weuikenat, MEng in January 1999

(d) Interactions.
Meetings:

(1) PI meeting, Florida, March 1995, organizer R. Parker of ARPA, presentatzon by A. Bojanczyk,
"Space-Time Adoptive Processing on High-Performance”.

(2) Kick-off meeting, Ithaca, June 1995, M. Linderman and V. Vannicola of Rome Lab.
(3) General ARPA CSTO BI meeting, Florida, July 1995, organizer H. Frank of ARPA.

(4) PI meeting, Boston, November 1995, organizer V. Vannicola of Rome Lab, presentation by A.W.
Bojanczyk "STAP on High Performance Computers, Progress Report”.

(5) PI meeting, Atlanta, January 1996, organizer R. Parker of ARPA, presentation by graduate student
G. Adams, "Tools for building parallel application-specific libraries”.

(6) Six months review, Ithaca, January 1996, M. Linderman and V. Vanaicola of Rome Lab.

(7) ASAP workshop, Boston, March 1996, presentation by graduate student R. Durie ” STAP on
HPCs, Benchmearking Tools”,

(8) PI meeting, San Diego, June 1996, organizer J. Munoz of ARPA, presentation by graduate student

R. Durie, "Modeling Paraliel Libraries”.
(9) Six months review, Ithaca, September 1996, M. Linderman and V. Vannicola of Rome Lab.
(10) General ARPA CSTO PI meeting, Dallas, Texas, October 7-8, 1996, organizer H. Frank of DARPA.

(11) 8th SIAM Conference for Parallel Processing for Scientific Computing, Minneapolis, MN, March
14-17, 1997. Presentation on ”Automated Modeling of Parallel Algorithms for Performance Optimiza-
tion and Prediction”.

(12) Fifth Annual Workshop on Adaptive Sensor Array Processing (ASAP '97), Lexington, MA, March
13, 1997, presentation on "Automated Application Synthesis for High-Performance Sensor Array Pro-
cessing”.

(13) DARPA Embeddable Systems PI Mecting, Santa Fe, NM, March 19, 1997, presentation by grad-
vate student W, Kostis on ”Parallel Libraries for Space-Time Adaptive Processing .

(14) DARPA Embeddable Systems PT Mceting, Ft. Lauderdale, FL, March 25-27, 1998. The pro;ect
progress report, *Space-Time Adaptive Processing on High-Performance Computers”.

Consultative and advisory funclions:
We helped to install several pieces of software on the Rome Lab Paragon system (tcsh, scalapack,
lapack).

(e) New discoveries and inventions.

A benchmarking harness for the building block suite was developed. The benchmarking tools
measure the performance of computational and communlcatxon subroutines on a variety of parallel
machine configurations.

Tools for automatic performance modeling of parallel routines were developed. The tools facilitate
complete performance characterization of individual library modules and entirc STAP implementations.

Multi-instance libraries were created. A multi-instance library is constructed from multiple imple-
mentations of functionally identical routines. These routines can operate on different data distributions
and utilize different algorithms however. When a routine is called from a multi-instance library, op-
timization tools are free to choose any implementation. Multi-instance libraries aid in performanck % .
optimization of STAP methods on parallel architectures.

(f) Patent disclosures.
There were none.

(9) Technology Transition.
The full versions of the redistribution library is available from our web site.

(h) Comparison of accomplishments with goals.

SCHEDULED WORK

YEAR 1

Examine various STAP methods and
identify the complete set of major com-
putational components needed. Assess
available portable computation libraries.

Examine possible communication needs.
Assess available portable communication
needs.

Develop benchmarking suite.

Develop efficient methods for each com-
putational module. Implement each mod-
ule for various data distributions.

Experiment with and analyze above im-
plementations.

Apply previous work in recursive least
squares as one solution to the STAP prob-
lem.

ACTUAL ACCOMPLISHMENTS

e Pre- and Post-Doppler Element Space
STAP methods were implemented. Ma-
jor computational modules were identi-
fied. LAPACK and SCALAPACK com-
putation libraries were selected.

e Communication primitives were bench-
marked. In addition to native communi-
cation libraries, a portable MPI commu-
nication library has been selected.

e FFT, QR, triangular solve, I/O and
"corner turn” problems were selected as
benchmarking modules.

¢ Several computational modules were im-
plemented with standard BLAS, ScaLA-
PACK, LAPACK, and MPI routines.
Each building block has several im-
plementations corresponding to different
parallel data distributions and machine-
specific parameters.

e The performance of each building block
was experimentally determined. The
building blocks were used to implement
several variations of the higher-order post
-Doppler STAP computation on the Intel
Paragon and IBM SP2.

e A new implementation of the ”sliding
hole” strategy was proposed.

SCHEDULED WORK

YEAR 2

Complete initial development, experimen-
tation, and analysis of all computational
modules.

Port implementations to target architec-
tures.

Experiment and analyze implementations
for all target architectures.

Optimize implementations where possible.

Experiment with new implementations.

ACTUAL ACCOMPLISHMENTS

MATLAB routines were written for library
modules to verify numerical correctness of
parallel codes.

Data redistribution routines were added to
the library.

All modules were run on the Intel Paragon
and the IBM SP2.

Analytic models based on benchmarked
machine parameters were developed.

Several implementations of basic library
modules were developed. Multiple imple-
mentations were collected in Multi-instance
libraries.

A PRI-Staggered method was implemented
on both Paragon and SP2.

A hybrid fine-coarse grain implementation
of the HOPD method was developed. The
hybrid method can use more processors
than the number of PRIs in the data cube.
It was often faster than methods that ex-
ploit only coarse grain parallelism.

A parallel version of MITRE STAP bench-
marks was built from library modules.

SCHEDULED WORK : ACTUAL ACCOMPLISHMENTS
YEAR 3
e Consider overall computational flow for o Two ways of partitioning the STAP input
each STAP method. datacube were implemented using library

modules. Two different algorithms were
built from library modules which together
with the two different partitioning scheme
gave four distinct STAP systems.

e Build implementations for each STAP
method considered using modular build-
ing blocks.

* Experiment and analyze STAP imple- o The code was verified on the Intel

mentations. Paragon and the IBM SP2 parallel com-
e Optimize STAP implementations where puters.
possible.

e User manuals were written and the code
was made available for downloads from
the PI’s web site.

STAP Algorithm Construction

A.W. Bojanczyk and R.H. Weitkunat

Chapter 1

Introduction

This document illustrates how one can construct parallel STAP applications
in the C language utilizing the MPI-based ALPS redistribution library and
LAPACK, a third-party linear algebraic math library. Two examples of
STAP implementations are.presented,.as. well as. information .on. installing,. .
and-configuring tke libraries for inclusion in- parallek € algotithims: -

Chapter 2 described the operation of the STAP algorithms including the
organization and distribution of the input data. Chapter 3 explains how
to obtain the ALPS and LAPACK libraries, and provides instruction for
executing the sample STAP programs described in chapter 2.

Chapter 2

Space Time Adaptive
Processing (STAP) algorithms

Two sample STAP implementations are presented in this section to demon-
strate the use of the ALPS-library-in constructing - parallel-algorithms: I
is assumed that thé reader is familiar with STAP processing and has famil-’
iarity with the ALPS library as described in the ALPS manual {1]. The
performance of some of the ALPS procedures were measured and analyzed
in [2].

Each implementation is organized into two components: first, the pre-
STAP preparation of the datacube and the set of steering vectors; and sec-
ond, the actual STAP processing. See Figure 2.1 for a general depiction of
implementation.

The pre-STAP steps include distribution, duplication, and optionally per-
forming doppler processing (a one dimensional FFT along all Pri’s for each
value of Range and Channel). This creates a number of independent sub-
cubes that each have the same length of Range and Channel dimensions,
with shortened Pri dimensions, and are distributed across the set of parallel
Processors.

The actual STAP processing is then performed on each subcube, inde-
pendently of the others. Each STAP operation produces output data which
are joined together to comprise a distributed datacube for output.

Two methods of data distribution are combined with two STAP algo-
rithms to perform four different operations, both with the option of applying
the FFT. Each program processes two sets of data, the radar data and the
set of steering vectors.

T T T 17 1T 1 1
1 i
[} | 1 l' +]]
dar Data | Steering Vectors
Lot 1 ALPScube L.
iem ol .). olen
1 1 i i] 1

PRE-STAP: Duplication, Duplication,
Distribution, Distribution,

T
t
STAP: :Ou put Data
|
]
i

Figure 2.1: General depiction of STAP algorithm implementation

2.1 Pre-STAP processing

Two schemes of data distribution in our examples are shown in Figures 2.2
and 2.4. Each operation is accomplished by an appropriate ALPS library
function and is labeled with the names of the corresponding procedural call.
The input data must be initially stored as files in the standard ALPS pdc
format; see [1] for the description of the pdc format. Some examples of
creating datacubes in pdc format are discussed in section 3.3.1.

2.1.1 Pri-Overlap SubCubes

The first scheme in Figure 2.2, dubbed the ’pri-overlap’ technique, divides
both the radar data and steering vectors into smaller subcubes with overlap-
ping regions in the Pri dimension.

The number of subcubes that are created, along with the length of each
subcube in the Pri dimension, are controlled by two parameters: offset and
overlap. These parameters are directly supplied to the ALPS SplitStag-
geredCube function which results in the creation of the overlapping sub-
cubes. See Figure 2.3 - the user is also refered to the ALPS library manual

10

Chan (J)

Range (L) L

T ¥ T
Pri(N) Inital Data Cube
N
PO l Pl P2 I P3

1-D FFT along Pri dimension
SplitStaggeredCube

Chan
Pri(N)

Range{L)

L e e e e e e e e =

P T ey |

-

N

] subcubes
offset

length of Pri dimension of each subcube: offset+overlap

Range of Pri dimension of
ith subcube: [i*offset:i*offset+offset+overlap-1]

Figure 2.2: Pri-Overlap distribution

[1] for further details on the usage of SplitStaggeredCube.
The number of new subcubes will be equal to the number of Pri’s in

the original datacube divided by the offset, or [Fj%i] Each process will
Pri

contain fm], except possibly for the last processor which will contain
- ;}'s‘ —| mod P subcubes, where P are the number of processors.

The starting Pri index of each subcube will be a multiple of the offset
parameter: namely, the ith subcube’s Pri dimension will start at index (i *
of fset), and end at (i * of fset + (of f set + overlap) — 1).

Doppler processing is optionally performed before the SplitStaggered-

Cube operation, as indicated in Figure 2.2.

11

L=6

(ol af2[3]4af5]

Offset=1 Overlap=4
~

Three processors
P=3

total number of blocks = L - overlap ‘l
offset

blocks_per_processor = _L__—_o_veﬂ_ —|
offset*p

p_offset = blocks_per_processor * offset

Figure 2.3: Example of SplitStaggeredCube’s output in overlapping dimen-
sion-

2.1.2 Pri-Staggered SubCubes

The second scheme, dubbed the ’pri-staggered’ technique, reorganizes the
data in a different fashion for the sake of performing the Doppler processing
on overlapping sets of data and then recombining the data as indicated in
Figure 2.4.

The number of cubes, k, produced as a result of the SplitStaggered op-
eration, is a parameter set by the user. This parameter also determines the
length of the Pri dimension for each resulting subcube after the ReCube
operation is performed. The user is also refered to the ALPS library manual
[1] for further details on the usage of ReCube. See Figure 2.5 for an illus-
tration of the operation performed by these two operations in the staggered
algorithm.

If no doppler processing is performed, then the result of this distribution
is exactly the same as for the ’overlap’ technique with parameters offset = 1
and overlap = k - 1. '

12

2.1.3 Dividing up the Steering Vectors

After the above repartitioning of data has been accomplished for both the
radar data and steering vectors, each subcube is ready to be processed by
the STAP algorithm. o

Each cube containing radar data is taken along with its corresponding
steering vector cube, as shown in Figure 2.6. However, only a subset of the
steering vectors are needed from each steering vector subcube. In general, if
there are N subcubes and p steering vectors in total, , then each subcube of
steering vectors is divided up into NV subsets of [£] vectors, and only the ith
subset will be used from the ith subcube. The remainders of the subcubes
are ignored.

As currently implemented, if there are fewer number of steering vectors
than subcubes (p < N), only the first p subcubes will be processed. Since
the subcubes are distributed consecutively, only the first [5] processors will
have work to do (where P is number of processors).

2.2 The Stap Algorithms

STAP processing relates to the minimization problem
min || Xw||
dHw=1

where X and d represent the radar data and the steering vector, respectively.
In STAP it is of interest to evaluate influence of each individual row of
X in the minimization. This importance can be assessed by measuring the
magnitudes of corresponding residual elements.
The relevant residuals are defined as follows. Let X; denote an (L—1)x N
matrix composed of all rows of X with the exception of the row =7

X:p,-(j‘;;') (2.1)

where P; denotes an appropriately chosen row permutation matrix, and let
w® be the minimum norm solution to

min || X;w]|s (2.2)
diw =1
weCN

13

Then .
T(i) = Xi'w(i) and fi = zflw(z) (23)

denote the residual vector in (2.2) and a predicted residual element, respec-
tively. The quantity
: 2 H, (i
Ti= T-i = - lmi W)I 1 (2‘4)
Nr®lle |(w®)EXE Xwl)|z
provides a measure of importance of the observation zf in the set X. We
will refer to 73,- as a scaled residual element.

Scaled residuals can be computed in various ways. In the following section
we present two STAP algorithms: FullUpdateStap and PredictRes.

Both algorithms work in serial fashion: that is, each processor does its own
computations with the data residing locally. These algorithms were written
with the aid of BLAS and LAPACK linear algebra functions. Each takes as
input a local ALPScube of radar data, and a local cube of steering vectors;
these cubes are the subcubes praduced by the redistribution described above.

2.2.1 FullUpdateStap

The FullUpdateStap solves mingsn,,—; ||Xw]| by computing the weight vector
w according to the formula

w— (XHX)d
dH(XHX)-1d
If the QR factorization of X is X = QR, then X¥ X = R¥R. Thus
w— (RER)"d
dH(RHR)-1d
In FullUpdateStap the R factor is downdated after removing a row from the

matrix X. Let R; be the triangular factor of X; where X; is X with the ith
row removed. From the Sherman Morrison formula we have

Hpy-1 _ (pHpy -1 (RYR)'zizf (RYR)™!
rny = oy + R R

Thus the formula for the optimal w® becomes

-1j , R-'&;5%d
L0 _ (RER)™d R™d+ S3wg”
T dH RHR,- -1d ~ sy5 , dH#3Hd
(i) de_}_ﬁz_

—~&1%;

14

where #; = R~¥z;, and d = R~7d.
Once w® are known , the vector t = (%,) of scaled residual elements 2.4
can be computed.
This process is repeated for each different direction vector dy producing
a matrix T of residual vectors, T = [ty, 12, ...%,].
. The basic steps for the FullUpdateStap algorithm implement the algebraic
formula above, and are described below and illustrated in Figure 2.7. The

main computations are vector and matrix operations and are realized by
BLAS and LAPACK functions.

Algorithm 2.1: FullUpdateStap

Input: Matrix X containing the radar data, and matrix D containing the set of steering
vectors.

Intermediate quantities: matrix W containing weight vectors W;

Output: matrix T containing residual vectors

LAPACK functions expect matrices to be in column-wise order.’
The required orientation must have Channels in
fastest-varying order in memory, and the Range in slowest-varying order.

I. Receive datacubes X and D with an orientation of Range, Pri, Chan.
Map datacube to 2-d n X m matrix X.
Number of rows is n = Pri - Chan,
and number of columns is m = Range.

Map steering cube to 2-d n x m matrix D
Number of rows is n = Pri - Chan, and number of columns
p is equal to the number of steering vectors.

I1. Create hermitian of X: X . Required for obtaining QR factorization.
Simple for loop.

III. Do QR factorization of X#: X¥ = QR
LAPACK function call:

zgeqrf(m, n, r, m, tau, work, lwork, info);

IV. Copy D and X matrices into buffer A: A [D X]
Simple memcpy.

15

V. Solve for A: R#A = A, where A = [D X]
LAPACK function call:
ztrtrs("U", "C", "N", orderR, nrhs, r, m, a, n, info);

VI. Compute vectors N2 and NX of squared norms of columns of the matrices D and X:
NP =57, |Dyl?,
N¥ =550 Xy

VII. Compute product B + X¥ D
LAPACK function call:

zgemm("C", "N", m, p, n, alpha, dx+sizeD, n, dx, n, beta, Xhd, m);

VIIL Solve for A: RA = A, where A= []3):(]
LAPACK function call:
ztrtrs("U", "N", "N", orderR, nrhs, r, m, dx, n, info);

IX. For each direction vector ﬁj (G = 1:p):
a) Compute columns W; of matrix W:

for i = 1 to m,

W' —) ((I—Nix)*ﬁj-I-B.',j *)2,')
' (0-NX)*NP+BF B ;)

where D is jth column of matrix D.

X ; is ith column of matrix X.
NP is ith element of vector NP.
N{¥ is ith element of vector NX.

B; ; is (i,]) element of matrix XHd.

b) Compute product C «+ XHW
LAPACK function call:

zgemm("C", "N", m, nrhs, n, alpha, x, n, w, n, beta, xhw, m);

c). Compute elements of matrix T = (T):
C;; is (i,j)th element of matrix X#W .
N; = square norm of ith column of X#W excluding (i,i)th element,
or || (ith column of X*W excluding (i,i)th element) ||2.

16

for i =1 to m,
T'i)j - _!-Yl'_

t

X. Return matrix T as datacube

2.2.2 Predicted Residuals

The PredictedRes algorithm determines the residuals in a different fashion
than FullUpdateStap. The first step in the PredictedRes method is to elimi-
nate the constraint from the minimization mingx,,—; || Xw||. This is achieved
by mapping the steering vector d onto the direction e, by a unitary trans-
formation H. The data matrix X must be transformed in the same manner,
resulting in the transformed data Xy = XH. The vector ¢t = (7;) of pre-
dicted residuals can now be computed from the orthogonal factor Q = (g;)
of the QR decomposition of X g according to the following foimula::

2 Qin 1
Ti= T2 2
Tintl \/@in+ Lni

The PredictedRes algorithm is summarized in the psuedocode below.

Predicted Residuals

e determin a reflection H (or a sequence of rotations G) such that d¥ H =
(0,..,0,1)

transform to unconstrained, Xy +— XH

get QR, Xy = QR

calculate d = diag(QQ¥), the diagonal of QQ¥
calculate g; 0 = V1 —d;, 1 =1,2,...,m

calculate the predicted scaled residual elements ;=

Qi,n . 1
Fintl \/aiz,n+q?,n+l
The basic steps in the PredictRes algorithm are vector matrix operations
and can be implemented with BLAS and LAPACK function calls, as illus-
trated below.

17

Algorithm 2.2: PredictRes

Input: Matrix X containing the radar data, and matrix D containing the set of steering
vectors.

Output: matrix T containing residual vectors

LAPACK functions expect matrices to be in column-wise order.
The required orientation must have Channels in
fastest-varying order in memory, and the Range in slowest-varying order.

L. Receive datacubes X and D with an orientation of Range, Pri, Chan.
Map datacube to 2-d n-by-m matrix X.

Number of rows is n = Pri - Chan, and number of columns
is m = Range.

Map steering cube to 2-d n-by-m matrix D
Number of rows is n = Pri - Chan, and: number. of calumns:

is m = number of vectors.

. Compute Householder vectors H = (hy, ha, ...hp):

for each direction vector d in matrix D (jth column where j=1:p)
d .

h +
5n(1+nzq|5n)

and 7, + 1.
where 4, is the last element in vector d.
and where 7, is the last element in vector h.

III. For each Householder vector h in matrix H:
a) Create hermitian of X: X¥. Required for obtaining QR factorization.

i) Z « ﬁ%ﬂX Hp, using LAPACK function:
zgemv ("N", numrows, numcols, beta, data, numrows, hvec, incx, zero, buf,
ii) X5 ¢~ X¥# + ZhH | using LAPACK function: »
zgerc (numrows, numcols, one, buf, incx, hvec, incx, data, numrows) ;

c) Do QR factorization of X,: X, = QR
where Q has dimensions (m,n).

b) Compute X < X + W%HX HphH . This is done in two steps: l
1 |

LAPACK function calls (Obtaining Q requires two steps):
QR factorization: zgeqrf(m, n, q , m, tau, work, lwork, info);
Obtain Q: zungqr(m, n, n, q, m, tau, work, lwork, info);

d) Compute Predicted Res of Q:
where @; ; is ith row, jth column element of matrix @,
N; is square norm of ith row of @ (N; = X7, 1Qi;1%)
R; ; is ith row, jth column element of output matrix R.

for each row 7 in Q: for i = 1:m,
.. |Qi,n|2
Ri; = \/(I—Ni)(l_Ni+|Qi,nlz)

IV. Return R as datacube.

19

Chan (J)
Range (L)

Ini'tal Dlata C*:xbe
PO | Pl | P2 l P3

@ts&:aggered@

Pri(N) N

k ALPScubes

1-D FFT along Pri dimension

< recure i

k<L T 1 I]
k<[i 1 i 1
k<L I I I

N ALPScubes

k< I I)

JoinCube,

TransCube,
Chan . SplitCube
Pri
TR TR
Range (L) !) | 1 !
1]
1 ' t
] |
'] { !)
) 1 | | '
' ']
| t
. \ 1 | .
] P TN Pe o
1 1
. 1 } | .
.) ' | .
\) 1 ' .
) i |
|]
' !] | .
[} ' 1
1 : '
| ! 1 | '
} Ll it U ! | -,
PO, P1, P2, P3

Figure 2.4: Pri-Staggered distribution

Pri: 0123

AN

Pri: 0123 1230 2301

Before
SplitStaggeredCube:

After
SplitStaggeredCube:

Doppler -
Processing:

Before
ReCube:

After
ReCube:

Figure 2.5: Example of Staggered Algorithm’s operation

21

Radar data: Steering vectors:

ith of N subcubes ith of N subcubes
Chan Chan
Pri Pri
Range Range
{Directions)

Tran:@ take ith N pi
subcube pieces

Chan
Range

Chan
Range

Pri Pri

STAP

Figure 2.6: Input for the single-processor STAP operation

22

D(n,p) X{n,m)

Steering Vectors Radar Data

(pri X Chan X Range) (Pri X Chan X Range
L

Step III: Obtain R from
QR factorization of

K v
Step V: Step V:
Solve for D: Solve for X:

RH = b Rig = x

Step VI:
Compute dot products o
columns of fjy andg :

Step VII:

Step VIII:,
Compute product :ﬁﬂﬁ

Solve for

RD = D

Step VIII:,
Solve for X:

R =28

Step IXa:
(Sherman Morrison eqn)
produce matrix W .

"

for each column in D

Step IXb:

Compute product

Step IXc:
Compute output:
T

Figure 2.7: Illustration of FullUpdateStap algorithm

23

Chapter 3
Software Installation,
Configuration, and

Demonstration

3.1 Configuration

The LAPACK library of linear algebraic functions is public domain. The
users guide is located on the web at:

http://www.netlib.org/lapack/lug/lapack_lug.html
The ALPS library is available at:
http://www.ee.cornell.edu/~adamb/STAP/software/ALPScomm.tar.gz

in compressed tar format. Please refer to the ALPS manual [1] for informa-
tion on installing the ALPS library.

3.2 Compiling your own programs with the
ALPS library

Users may want to modify existing example STAP programs, or create their
own STAP programs from LAPACK and ALPS modules.

24

3.2.1 Modify existing programs

Example programs such as overlap and staggered are located in the sub-
directory examples. To recompile these programs or any programs within
the ALPScomm library, the user must issue the make World command from
within the ALPScomm directory.

3.2.2 Compiling new programs

When compiling your own programs utilizing the ALPS library, you will need
to include the alpscube.h file in your C program. This file resides in the
ALPScomm/include subdirectory. When compiling your program you must
specify the pathname of the subdirectory, containing the include file, as a
compiler option (i.e. ~-Ipathname/ALPScomm/include).

In order to link the ALPS library, there are two library files you must
link: libcube.a and libcomm.a. These files reside in the ALPScomm/lib sub-
directory. To link.these libraries you must-include the proper linker options
(i.e. ~Lpathname/ALPScomn/iib:-1comm-~1cubeys.

If your program utilizes LAPACK functions then you must also link the
proper LAPACK libraries (i.e. for example, on Cornell’s SP2 the LAPACK
libraries are located under the subdirectory /usr/local/lib, so the corre-
sponding linker options are -L/usr/local/lib -1lapack -lblas -1x1£90).

The ALPScomm /examples subdirectory contains implementations of the
STAP algorithms described in section 2. These programs require the ESSL
math library package, which is linked using the -1essl linker option.

3.3 Running the example STAP programs

It is assumed that the user will create STAP datacubes from his own source.
Users must present radar datacubes in the ALPS pdc format described in
the ALPSmanual [1]. If the data is created synthetically in MATLAB, the
ALPS library provides functionality for creating files in the pdc format.

The steps below describe how to prepare your own data in MATLAB for
processing by the demonstration STAP programs, and how to execute the
programs.

25

3.3.1 Step 1 - Creating ALPScube data files in MAT-
LAB

It is possible to create synthetic STAP data in MATLAB. Our software re-
quires that the datacube is a three dimensional MATLAB array with the
dimensions corresponding to Range, Chan, and Pri, in some order. After
starting MATLAB, first you must do

addpath path/ALPScomm/matlab

where path is the path specifying the location of the ALPScomm/matlab sub-
directory.

Ascertain which dimensions of the MATLAB matrix correspond to which
physical parameters (Range, Chan, and Pri). If the data generated by MAT-
LAB is a two dimensional array, then two of the parameters are likley com-
bined into a single dimension. You must determine which of the two param-
eters are ordered consecutively, or fastest-varying, in that dimension. Once
this i5 determined; the order of the dimensions in-the three dimensional.array. .
can be established.

For example, in Figure 3.1, a two-dimensional matrix is illustrated, with
the rows spanning the set of Ranges, and the columns spanning the combined
parameters of Pri and Chan. The correct labeling of the dimensions is 'Range,
Pri, Chan’. The first MATLAB index corresponds to Range and is easily
determined. The 2nd dimension parameter label is 'Pri’ because the Pri’s
are grouped together consecutively for each Chan, and thus the Pri’s vary
faster than the Chan’s.

In Figure 3.2, the dimensions are ordered as (Pri, Chan,Range) following
the same reasoning as in the previous example.

Once the dimensions are ordered then the matrix can be written to a
datacube file.

Writing MATLAB matrix to ALPScube file

In order to write a parallel datacube file, the user can run the following
MATLAB command in the ALPS MATLAB subdirectory:

makecube(data, ’filname’, ’orientation’, ’datatype’, Range, Chan,

Pri)
where:

e data is the data matrix

26

(Range, Chan, Pri)

Pri: o 1 2
[| 1T |
Chan: 012345 012345 012345

Range

Figure 3.1: Example 2-d MATLAB matrix (Range, Chan, Pri)

(Pri, Chan, Range)

Range

1

Chan: 0

L

Chan: }

1

Chan: 2

NRWNROVRWNHONRWN RO FTd

—

Figure 3.2: Example 2-d MATLAB matrix (Pri, Chan, Range)

e filename is a string specifying the filename of the ALPScube

e orientation is a string listing the order of the dimension names as
determined in step 2 above (i.e. ’'range chan pri’, ’pri chan range’,
‘range pri chan’, etc)

e datatype is a string specifying the datatype: ’complex’ or ’"double_complex’
e Range specifies length of range
e Chan is number of channels

e Pri is number of pri’s

27

If the data matrix is already in 3-d format then the last 3 parameters are
optional.

This function writes the datacube to a parallel data cube file (.pdc for-
mat).

Creating a set of Standard Steering Vectors

The steercube MATLAB command creates a set D of standard steering
vectors where D = kron(dftmtx(Pri)’,dftmtx(Chan’).
To create a cube of steering vectors with Chan-Pri direction vectors D, the

user should execute: steercube(’filename’, chan, pri, datatype)
where:

e filename is a string specifying the filename of the ALPScube,

e chan is number of channels

e pri is number of pri’s.

e datatype is a string spécifying the datatype: ’complex’ or "double_complex’

This function writes the steering cube to a file in .pdc format.

3.3.2 Step 2 - executing demo STAP implementations

Two programs, overlap and staggered, reside in the ALPScomm/examples
subdirectory. These programs implement the two different methods of data
distribution described in section 2.1. Each program takes command line
parameters which specify whether to use the FullUpdateStap or PredictRes
STAP algorithm. The command line parameters are specified below.

The steps below outline the procedure for execution on the Cornell SP2.
There are two modes of execution, interactive and batch. Interactive mode
entails running the programs at the command prompt with immediate re-
sults. However this limits the user to at most 4 processors.

Batch mode entails submission a request for processor allocation and ex-
ecution to a queue and waiting for the program to be executed at some
unspecified future time. Sample batch files have been provided in the ALP-
Scomm /examples subdirectory for this purpose and are specified below.

28

Interactive Mode

Before execution, the ALPS library requires that the environmental variable
CUBEDEFINITIONS be set to the full pathname of the ALPScomm/dataformat
subdirectory.

1) ”Overlap” distribution (described in section 2.1.1)
overlap datafile steerfile outputfile offset overlap fft alg

datafile: name of data file (excluding .pdc extension)
steerfile: name of steercube file (excluding .pdc extension)
outputfile: name of output data file (excluding .pdc extension)
offset: offset value

overlap: overlap value

. fft: O=no doppler processing, 1= doppler processing

algr O=FullUpdateStap ;-3=PredictRes

IT) ”Staggered” distribution (described in section 2.1.2)
staggered datafile steerfile outputfile numcubes fft alg

datafile: name of data file (excluding .pdc extension)
steerfile: name of steercube file (excluding .pdc extension)
outputfile: name of output data file (excluding .pdc extension)

numcubes: parameter specifying number of overlapping cubes as de-
scribed in Figure 2.4.

fft: 0=no doppler processing, 1= doppler processing
alg: 0=FullUpdateStap , 1=PredictRes

Batch Mode

The commands below submit batch jobs on cornell’s SP2 machine (splong.tc.cornell.edu)
for each of the indicated operations. All the batch files specified below are

present in the ALPScomm/examples subdirectory; they expect that the input

data file be named data.pdc and the steering vector file be named steer.pdc

and they allocate 4 processors for execution.

29

NOTE: The files must first be edited to set the pathname of the CUBE-
DEFINITIONS environmental variable. You may also modify the number of
allocated processors or the program command-line parameters as desired.

These commands must be execeuted from the ALPScomm /examples sub-
directory.

I) "Overlap” distribution (with parameters: offset = 1, overlap = 3)

a) with FullUpdateStap algorithm
without doppler processing: 1lsubmit overlap_fu.batch
with doppler processing: 11lsubmit overlap_dp_fu.batch
b) with PredictRes algorithm
without doppler processing: 11submit overlap_pr.batch

with doppler processing: 11submit overlap_dp_pr.batch

IT) ”Staggered” Distribution (with parameters: numcubes. = 3).

a) with FullUpdateStap algorithm

- without doppler processing: 11submit staggered_fu.batch
with doppler processing: 11submit staggered_dp_fu.batch
b) with PredictRes algorithm

without doppler processing: 11submit staggered_pr.batch
with doppler processing: 11submit staggered_dp_pr.batch

3.3.3 Step 3 - Read output of algorithm

To read the output file of a STAP program in MATLAB, start MATLAB,
and do

addpath path/ALPScomm/matlab

where path is the path specifying the location of the ALPScomm/matlab sub-
directory. To read the output file of a STAP program, run:

[data,format] = mat_readcube(’filename’)

where filename is filename of output file. data is the 2-d matrix con-
taining the results. The number of rows are equal to the number of direction
vectors, and the number of columns are equal to the length of Range.

30

Bibliography

[1] Richard H. Weitkunat, ALPS Parallel Library for Three-Dimensional
Data Redistribution, Department of Electrical Engineering, Cornell Uni-
versity, August 1999

[2] Richard H. Weitkunat, Improvements To Parallel Libraries For Three-
Dimensional Data Redistribution, Department of Electrical Engineer-
ing, Cornell University, January 1999

31

ALPS PARALLEL LIBRARIES FOR THREE-DIMENSIONAL DATA REDISTRIBUTION

A.W. Bojanczyk, B. Durie, W. Kostis and R.H. Weitkunat

Contents

1 Data Dlstrlbutlon and Redistribution 36
11 SampleCode 39

2 ALPScube C functions

44
21 Imtroduction. 44
22 TheALPScube Lh

2.2.1 The Data Cube and Block Cyclic Data Dlstnbutlon -« - 45
2.2.2 The Process Cube

223 Block Cyclic Distribution. in one.difnension. 2;
2.24 Block Cyclic Distribution in three dimensions 45
2.2.5 Exceptions to the Block-Cyclic distribution - ¢ 46
226 ALPScube Types 46
-2.2.7 Creating a Cube Communicator . . T 48

2.3 Creating an ALPSCube e 49
"~ 23.1 Create an ALPSCube from a linear data buffer 49
232 Creatinga”blank” cube : 50

2.4 Retrieve an ALPScube into a linear array 50°
2.5 Reading and Writing ALPScubes from/todisk 1

‘5
2.6 Redistributing an ALPScube over a different number of processors g,
2.6.1 Reducing the number of processors

2.6.2 Increasing the number of processors g%
2.7 Transposition, Reblocking, and conversion between cube types . 57
‘ 2.7.1 TransCube for block-cyclic ALPScubes 57
2.7.2 TransAnyCube for non-block-cyclic ALPScubes 59
2.7.3 TransCubeResize for resizing the process cube 59
2.8 Dividing an ALPScube into smaller ALPScubes 60
29 Combine Multiple ALPScubes into a single ALPScube 63
2.10 Split ALPScube into overlapping ALPScubes 64
2.10.1 Consecutive distribution of subcubes 64
2:10.2 Round-robin distribution of subcubes 67
2.10.3 overlapping distribution of data 68
2.11 Reorganize Cube Data 69

2.12 Duplicate ALPScube e e e e e e 70

3 ALPScube Matlab functions

3.1
3.2
3.3

34
3.5

3.6
3.7

41
4.2

4.3
44

Introduction L e
Read an ALPScube pdc fileintoMatlab
Write an ALPScube pdc file from Matlab
3.3.1 MATLAB Canonical Orientation
Display contents of ALPScube
Create ALPScube with data entries that identify coordinates of

eachentry e
Create ALPScube with random data entries
Retrieve information about an ALPScube type definition

Installation and Configuration

Obtaining the Software.
Creating the library files
421 CompilationontheSP2
4.2.2 Compilation on the Intel Paragon. e
Setting the Environment
Writing Cprogramso

33

List of Figures

1.1 Graphic illustration of data distribution 36
2.1 Example of block-cyclic distribution in one dimension 46
2.2 Ilustration of processor mesh and distributed data cube 46
2.3 INustration of data arranged inmemory 48
2.4 . Graphic illustration of ManyToFew e e e e e 54
2.5 FewToMany used to create larger processcube 56
2.6 Graphic illustration of TransCube 58
2.7 Graphic illustration of SplitCube3d. g2
2.8 Consecutive overlapping distribation- 65
2.9 Mlustration of SplitStaggerCube 66
2.10 Round-robin overlapping distribution 67
2.11 Pattern of overlapping distribution 69-
2.12 ReCube

List of Tables

2.1 Supported Datatypes

35

Chapter 1

Data Distribution and
Redistribution

We start by. presenting an example illustrating functionality of the ALPS li-
brary. Let us consider a distributed three-dimensional matrix of data (hereafter
referred to as a "data cube”) residing oun.a.mesh.of.parallel processors.that.
are logically-(although-wot: necessarily physieally} organised-into asthree dimen-:
sional rectangular topology, or ”process cube.” We would like to reorganize this
data in a series of reconfigurations, as graphically illustrated in Figure 1.1. Each
configuration corresponds to a computational module in the ALPS library. A

sample program which implements this series of reconfigurations is shown in
section 1.1.

DistCube SplitCube JoinCube

iy
RRNRY

Figure 1.1: Graphic illustration of data distribution

In the example shown, we are operating on four processors. The processors
are labeled 0 to 3, and the Oth processor is referred to as the root Processor.
First we would like to create a data cube that occupies all four 4 processors.

36

We start with a three dimensional matrix of data stored on the root processor
in a linear array, date.

startCube = DistCube(data, dims, blocksizes, startType, startComm) ;

Each processor simultaneously issues the DistCube command, which- copies
and distributes the data residing on the root processor so that it is divided up
and distributed to the four processors. The function returns a handle, startCube,
for identifying the newly created ALPScube.

In Figure 1.1, the 3-dimensional data cube is depicted as a single 3-d matrix.
It is divided into portions residing on separate processors, outlined by the dark
heavy lines. The light lines illustrate the individual data elements. (The data is
distributed in a particular pattern known as Block-Cyclic distribution, discusséd
further in section 2.2.1.) ’

Besides the data itself, the ALPScube specifies the context in which the data
resides, namely which processors belong to the process cube upon which the data
is distributed. All operations henceforth performed on this data cube must be
performed simultaneously by all the processors that belong to it. In order to
allow each processor to perform separate operations on its portion of the data
cube, an ALPScube must be created for each processor which encapsulates only
the portion of data residing on.the ldcal processor. That is;accomplishied in the
next step.

NumberQOfPieces = 4;
SplitDimension = 2;
retCubelist = SplitCube(startCube, NumberDfPieces, SplitDimension)

All the processors next employ the SplitCube command to copy and repar-
tition the single ALPScube into four new smaller ALPScubes. SplitCube is
used to divide an ALPScube into equal sub-cubes, along a single dimension. No
data redistribution takes place, but the data is duplicated for the new ALP-
Scubes. It is the process cube that is subdivided.

The result of this particular operation is to encapsulate each processor’s
portion of the data as a separate ALPScube. This is illustrated in Figure 1.1
by the physical separation of the blocks of data residing on separate processors.

The functional difference between the new ALPScubes and their progenitor
is purely one of context. The four new ALPScubes each encompass a single
processor, and each processor may perform its own separate operations on the
smaller ALPSCube, independently of each other. The distributed portions of
the original data matrix can be managed as separate matrices in this fashion.

The SplitCube command only works on process cubes that have a lin-
ear shape, or have only one dimension with a length greater than one. The
SplitCube3d command was created to overcome this particular restriction,
although it also only can split cubes along a single dimension at a time.

Besides creating new ALPScubes which are subsets of a larger ALPScube,
it is also possible to join ALPScubes together, as shown next.

37

JoinDimension = 2;
joinedCubes = JoinCube(retCubelist, JoinDimension, joinComm);

The JoinCube command is next utilized to create two new ALPScubes from
the four smaller ones. JoinCube is used to join cubes along a single dimension.
Again, as in SplitCube, no data are redistributed between processors. All four
processors execute the JoinCube command; however, in this case, processors
0 and 3 join to form an ALPScube with their resident data, separate from the
one formed by processors 1 and 2.

The means of organizing processors into process cubes involve utilizing MPI
commands and communicators, and is discussed further in section 2.2.7. In
this step, the two groups of processors ({0, 3}, and {1, 2}) are in effect acting
independently of each other, since the ALPScubes involved do not span between
the two groups.

The JoinCube command only works on process cubes that have a linear
shape, or have only one dimension with a length greater than one. The Join-
Cube3d command was created as an extended version to overcome this partic-
ular restriction, although it also only joins cubes along a single dimension at a
time.

So far, three different frameworks have heen created for. managing three -
copies of the same -data matrix. on- the same: processors. . The- fixsst- postrays..
the data as a single matrix distributed over 4 processors, the second as four
matrices residing on separate processors, and the third as as two matrices each
distributed over two processors.

Now we will actually redistribute the data cubes of the two ALPScubes
created by the JoinCube command.)

transposedCube = TransCube(joinedCube, newCubeType, newBlockSizes);

Processors 1 and 2 apply the TransCube command to the ALPScube that
they have in common, and likewise for Processors 0 and 3. As shown in the
figure, the data cubes of the new ALPScubes have had two of their axes trans-
posed. The dimension that previously spanned over multiple processors now
resides within a single processor, and vice versa. The process cubes themselves
are not transposed. A

In this example only two dimensions were transposed, although TransCube
is capable of transposing all three simultaneously, as well as redistributing data
in a block-cyclic pattern. See section 2.2.1 for further details.

So far, all the processors have executed the same sequence of ALPS functions

in the same order. In the next stage of redistributior the sizes of the process
cubes themselves are affected.

if (myid == 2)
inputCube

NULL;
else

inputCube = transposedCube;

38

ftmCube = FewToMany(inputCube, ftmComm);

Processors 0, 2, and 3 perform the FewToMany operation. (Processor 2
has to pass a NULL value for the input cube, instead of transposedCube). The
purpose of this operation is to increase the number of processors over which
an ALPScube is distributed. In the example shown, the ALPScube residing on
processors 0 and 2, previously created by the TransCube command, is copied
and evenly redistributed over processors 0, 2, and 3. But for the newly created
ALPScube, processor 2 is logically ordered to come after processor 3. The
processors 0, 2,and 3 have been reordered utilizing the same methods as before,
during the previous JoinCube operation.

While this operation takes place, a different operation takes place on pro-
cessors 1 and 2 (processor 2 takes part in both operations, but it does so se-
quentially, first participating in one operation, then the other).

NumProcsDim0O = 1;
NumProcsDiml
NumProcsDim2
mtfCube = ManyToFew(transposedCube, NumProcsDim0Q, NumProcsDimil, NumProcsDim2, NULL);

Hon
S
. e

Processors 't ‘and 2 perform the ManyToFew command-on their AEPSCube.
The purpose of this command is to reduce the number of processors over which
a data cube is distributed. In the example, a new ALPScube is created that
resides on only one processor. The 2nd processor does not hold any -data from
the new ALPScube, nor does it receive a handle for it. Instead it is returned a
NULL value. ' ‘

In the last stage of this example, the resulting two ALPScubes are joined
together. Notice that for the new ALPScube created, the processors are back
in their original order. This is again due to the specified MPI communicator,
which is the same one used by the first ALPScube.

finalCube = JoinCube(newCubeList, JoinDimension, startComm);

This new cube is not distributed evenly: processor #1 now has twice as
much data as the other processors. Also, the data on processor #3, which was
logically in the middle of the previous data cube, is now logically at the end
of the resultant data cube. This cube can later be redistributed evenly using a
redistribution function such as TransCube, FewToMany, or ManyToFew.

Although this example depicts a linear process cube, the example can effort-
lessly be extended to a 3-dimensional process cube.

1.1 Sample Code

#include <stdio.h>

39

#include "alpscube.h"

/* LOCAL PROTOTYPES =*/
ALPScube FillCube(ALPScube cube);

‘main(int argc, char *+argv)

{

/* VARIABLES */

int pri, chan, range;

int dim{3];

int blocksizes[3]= {0,0,0};

int newBlockSizes([3]= {0,0,0};

int myid;

int newid;

int JoinDimension;

int NumberDfPieces, SplitDimension;
int NumProcsDim0, NumProcsDiml, NumProcsDim2;
int coloril;

int color2; .

char #startType = "Pxi_Chan Range SC7;..
char: *nevCubelypec=-*Range. Fxi.Chan;SCT;» -

'MPI_Comm startComm;
MPI_Comm tempCommi;
MPI_Comm tempComm?2;
MPI_Comm joinComm;
MPI_Comm ftmComm;

ALPScube startCube = NULL;
ALPScube *retCubelist = NULL;
ALPScube joinedCube = NULL;
ALPScube transposedCube = NULL;
ALPScube inputCube = NULL;
ALPScube mtfCube = NULL;
ALPScube ftmCube = NULL;
ALPScube newCubelist[2];
ALPScube finalCube = NULL;
ALPScube finalCube2 = NULL;

/* Initialize argc, argv */
Initialize(&argc, Rargv);

/* Set dimensions of ALPScube */
dim{0]=pri=16;

dimf[1)=chan=32;
dim[2]=range=1024;

40

/* get processor id */
MPI_Comm_rank (MPI_COMM_WORLD, &myid);

/* Make Cube communicator #*/
startComm = MakeCubeComm(MPI_COMM_WORLD, 1, 1, 4);

/# Distribute data among processors and create data cube */
startCube = DistCube(data, dim, blocksizes, startType, startComm));

/* Split cube into 4 pieces along 2nd dimension */

NumberOfPieces = 4;

SplitDimension = 2;

retCubelist = SplitCube(startCube, NumberDfPieces, SplitDimension);

/* Make communicator for ist upcoming join #*/

if (myid ==0 |] myid ==3) /+ I am the 1st or the 4th .processor %/
colort = 0;

else /+ I am the 2nd or 3rd processor */

colort = 1;

MPI_Comm_split(startComm, colorl, myid, &tempCommi); .

/* pes.processs.cubes. ave: half.as:Yong: as-original-»/f:

joinComm = MakeCubeComm(tempComml, 1, 1, 2);

JoinDimension = 2;
joinedCube = JoinCube(retCubelist, JoinDimension, joinComm);

transposedCube = TransCube (joinedCube, newCubeType, newBlockSizes);

/* Do ManyToFew on processors 1 and 2 */
if(myid == 1 || myid == 2) /* If I am Processor 1 or 2 */

{

NumProcsDim0 = 1;
NumProcsDiml = 1;
NumProcsDim2 = 1;

mtfCube = ManyToFew(transposedCube, NumProcsDim0, NumProcsDimi, NumProcsDim2, NULL) ;
}

/* Make communicator for FewToMany */
/* Switch order of processor 2 and 3 */

if(myid == 2) /* Rerank 2 as 3 for new communicator */
newid = 3;

else if(myid == 3) /# Rerank 3 as 2 for new communicator #*/
newid = 2; '

else

newid = myid;

41

if(myid == 1) /* Processor 1 not included */
color2 = 0; '
else
color2 = 1;
4
MPI_Comm_split(startComm, color2, newid, &tempComm2);
/*Do FevToHﬁny on processors 0, 3, and 2 */
if(color2 == 1)
{
ftmComm = MakeCubeComm(tempComm2, 1, 1, 3);
/* if myid==2, ve dont have any cubedata to submit to FIM */
if (myid == 2)
inputCube = NULL;
else
inputCube = transposedCube;
ftmCube = FewToMany(inputCube, ftmComm);
}
/# Join ;icubes -togethear::create: list: for. JoinCube. =/
if (mtfCube) {
newCubeList[0] = mtiCube;
newCubeList[1] = NULL;
}
else if (ftmCube) {
newCubeList[0] = ftmCube;
newCubeList[1] = NULL;
}
else
newCubeList [0] = NULL;
finalCube = JoinCube(newCubelList, JoinDimension, startComm);
finalCube2 = TransAnyCube(finalCube, finalCube->definition->name, blocksizes):
WriteCube("example”, finalCube2);
Finalize(); s

}

/* ALPScube FillCube (ALPScube cube) */

/* £ill cube with test data that indiactes coordinates. */
/* 0Only for block-distributed cubes. */

ALPScube FillCube(ALPScube cube)

{)

int i, j, k;

42

CMPX *#xscData = (CMPX #*#*)cube->data;

CMPX scNum ;

DCMPX *#*dcData = (DCMPX #***)cube->data;
DCMPX dcNum ;

int factor[3]={10,10, 0};

int dim;

for(i=0; i<2; i++)

{

dim = cube->dim[i+1];
vhile(dim > 10)

{

dim /= 10;
factor([i] *= 10;
}

}

factor[0] *=factor[1];

for(i=1; i<= cube->1dim[0]; i++)

for(j=1; j<= cube->1dim[1]; j++)
for(k=1; k<= cube->1dim[2]; k++}

{ C e .

switch(cube->definition->Datatype) {

case MPI_COMPLEX:

scNum.re = scNum.im =
(i+cube->firstId[0])*factor[0]

+ (jtcube->firstId[1])+factor(1]

+ k+tcube->firstId(2];

scData[i-1]1[j-1] (k-1] = scNum;

break;

case MPI_DOUBLE_COMPLEX:

dcNum.re = dcNum.im =
(it+cube->firstId[0])*factox[0]

+ (j+cube->firstId[1])*factor(1]

+ k+cube->firstId[2];

dcDatali~1] [j-1] [k-1] = dcNum;

break;

default:

parError ("FillCube : Datatype not supported");

}
}

return (cube);

}

43

Chapter 2

ALPScube C functions

2.1 Introduction

This document describes a collection of C functions that are designed to facili-
tate the organization and distribution of three dimensional data matrices across
parallel processors.

2.2 The ALPScube

An ALPScube, from the programmer’s point of view, is an identifier used to refer
to a distributed data matrix, and to distinguish one’ ALPScube from another.
But this identifier serves a hidden purpose as well.

In actuality, the ALPScube is a pointer to a data structure. Each proeessor
that belongs to the distributed cube’s processer mesh maintains a local data
structure which contains information describing the global data matrix, as well
as information relevant to its portion of the data.

The ALPScube data structure contains the following information about the
data cube:

1. a pointer to a 3-d array of the local portion of the data matrix
. the global data matrix’s dimensions
. the global data matrix’s blocksizes

. the dimensions of the processor’s local portion of the data matrix

. the dimensions of the process cube

2

3

4

5. the global coordinates of the local cube’s origin

6

7. the local processor’s coordinates in the process matrix.
8

. information from the ALPStype (see section 2.2.6 below).

44

2.2.1 The Data Cube and Block Cyclic Data Distribution

The data of an ALPSCube is initially distributed according to a set pattern.

The data distribution functions ColiCube, Dist Cube, TransCube, ManyToFew,
and FewToMany all employ the commonly used block-cyclic data distribution.
The ALPSCube that is both created and read by these functions is distributed
in a three-dimensional block-cyclic fashion. The TransCube and DistCube
functions take block sizes for all three dimensions as a parameter.

2.2.2 The Process Cube

The process cube refers to the actual processors that contain a portion of the
distributed data matrix. This group of processors is identified as a whole by
an MPI ”Communicator” (an integer handle). The communicator serves the
same purpose for the processors as the ALPSCube serves for the distributed
data matrix.

The processors are logically organized into a three-dimensional rectangular
mesh, and each processor is assigned a set of three cartesian coordinates. See
figure 2.2 for an illustration of a process cube. In this document, the x dimension
-of the process cube always refer to the dimension that corresponds to the slowest-
varying dimension of the data cube, while the z-dimension refers to the fastest—
varying dimension; as shown i figure-2:3:

2.2.3 Block Cyclic Distribution in one dimension.

The distribution pattern is easily described in the one-dimensionsal case. Figure
2.1 illustrates an array which is to be distributed in block-cyclic fashion amongst
a group of three processors with a block size of 2. ‘

To put it more formally, given a linear array of NV elements and a blocksize
of b, the array is split into [%] blocks, and the blocks are cyclicly distributed
across P processors in round-robin order.

Processors 0 thru P, = |} mod P each receive [N mod (Pb)] blocks. If
P, < P —1, then processors P, + 1 thru P — 1 receive [N mod (Pb)] — 1 blocks.
If N is not a multiple of b, then the very last block, received by processor P,,
will contain N mod b elements.

2.2.4 Block Cyclic Distribution in three dimensions

The extension to three dimensions follows easily. The pattern is applied to each
dimension independently. Each dimension is partitioned by it’s own blocksize,
and each block is assigned to a processor index along its respective dimension.
By applying this to all three dimensions, the cube is effectuvely partitioned
into 3-d blocks, and each block’s assigned processor is identified by the three
processor indicies which match the processor’s cartesian coordinates.

Each processor stores its locally assigned data as a three dimensional matrix.

Figure 2.2 illustrates the data matrix distributed over the processor mesh, or
process cube.

45

LINEAR ARRAY

[of 2] 2] 3| af s]..[x2]23]14}

t
BLOCKSIZE = 2 l
r
o} 1 2| 3 4| S
6{ 7 8] 9 1011
12]13 14
Processor #0 Processor #1 Processor #2

Figure 2.1: Example of block-cyclic distribution in one dimension

)

SYRLLA Y

Figure 2.2: Tllustration of processor mesh and distributed data cube

2.2.5 Exceptions to the Block-Cyclic distribution

ALPScubes do not have to be distributed in a block-cyclic format . The final
ALPScube created in the introductory example is not distributed in block-cyclic
fashion. The function TransAnyCube can in fact read such an ALPScube.

The data is assumed only to be contiguously distributed along each dimension. ‘

2.2.6 ALI?Scube Types

When an ALPSCube is created by the functions DistCube and TransCube, ‘

a cube type must be specified as a parameter. A cube type descibes certain
properties of the ALPScube:

e the relative orientation of the data cube’s axes

¢ the data type of the data elements

46

MPI Datatype Equivalent C datatype
MPI_.CHAR signed char

MPI_SHORT signed short int

MPLINT signed int

MPILONG signed long int

MPIFLOAT float

MPI.DOUBLE : double

MPI.COMPLEX struct { float re; float im; }
MPI_DOUBLE_.COMPLEX | struct { double re; double im; }

Table 2.1: Supported Datatypes

e restrictions on other characteristics of the ALPScube

ALPScube types are defined in an ascii file named ”stap.fmt”. The eviron-
mental variable CUBEDEFINITIONS must contain the name of the directory in
which the file resides (see section 4.3 for more details).

Several pre-defined types may exist in the file, but the user can modify the
file and create new ALPScube types as desired. The format of an ALPStype .
definition is.as.follows: -

{ALPScube_type_name} {
MPI_Datatype {datatype)}
permute {permute vector}
restriction (condition)

The string ALPScube_type_name is an arbitrary alphanumeric label. The
string datatype specifies the datatype of the data’s elements. It must be a MPI
datatype: supported types are listed in table 2.1.

The permute vector is of the format [x y z] where x, y, and z specify the
orientation of the axes of the data cube (e.g. [0 1 2], {2 0 1], [2 1 0}, etc)
with respect to an arbitrary ’standard’ orientation of [0 1 2], the standard form.
The z-axis is always the fastest-varying dimension, regardless of its orientation
with respect to the standard form. The x-axis is the slowest varying dimension.
Figure (2.3) llustrates the actual layout of data in memory for a 3-d matrix with
dimensions (2,2,2).

The permute vector only has practical meaning in the context of transposi-
tion. For example, when a data cube with a permute vector of [0 1 2] is trans-
posed into a cube with permute vector [2 1 0], the effective result is to transpose
the x and z dimensions (a 2-d transpose) while leaving the y-dimension as is.
The source and destination permute vectors specify the two matrices’ orienta-
tion with respect to each other. In order to transpose a cube’s axes as desired,
an ALPStype cube definition must exist with the necessary permute vector to
achieve the new desired orientation of the axes.

47

Cartesian Linear
Coordinates Index

(0,0,0)
(0,0,1)
(0,1,0)
(0,1,1)
(1,0,0)
(1,0,1)
(1,1,0)
(1,1,1)

NouiibWNEO

Figure 2.3: Dllustration of data arranged in memory

Such an ALPScube is distributed over a group of processors (technically, the
data is distributed amongst processes, not processors. These processes could
all exist on the same physical processor, or-each-process: could exist-on-tts-own
separate processor. For thie remainder of this' doctiment, we do mot ‘distinguish
between processes and processors - the assumption is that each process runs on
its own separate processor).

2.2.7 Creating a Cube Communicator

MPI_Comm MakeCubeComm(MPI_Comm parentComm, int z, inty, int
2)

This function is used to organize a set of processors into a three dimensional
rectangular mesh and create a new MPI communicator to be used when creat-
ing an ALPScube. All the processors to be included in the new communicator
must already belong to a pre-existing parent communicator (specified as par-
entComm), and all members of parentComm must participate.

Parameters:
. pafentComm: the MPI communicator for the group of processors.
o z: desired length of the process cube’s x-dimension.
¢ y: desired length of the process cube’s y-dimension.

o z desired length of the process cube’s z-dimension.

The total number of processors belonging to parentComm must equal the

number of processors in the desired three-dimensional process cube, equal to
TXYX2Z.

48

Return Values: -

The function returns a new MPI communicator with the same processors as
parentComm and has each processor associated with cartesian coordinates. In
case of error, program execution is halted.

2.3 Creating an ALPSCube

This section describes functions that create an ALPSCube

2.3.1 Create an ALPSCube from a linear data buffer

ALPScube DistCube(void *linArray, int *dim, int *bs, char *cDefSif,
MPI_Comm totalComm)

This function distributes a linear data array into a distributed ALPScube. The
data is stored in memory as illustrated in figure 2.3.
Parameters:

e linArray: pointer to.data.buffer.. .

e dim: an arra); of three integers specifying the lengths of the global matrix’s
three dimensions. ‘

e bs: an array of three integers specifying the blocksizes for the three di-
mensions, for block-cyclic distribution.

o cDefStr: pointer to string specifying the desired ALPScube type of the
new ALPScube.

e totalComm: MPI communicator created by MakeCubeComm.

If a blocksize bs[d] for any given dimension d is zero, then the actual blocksize
used will be bs[d] = [%[ﬂ] , where P is the length of the process cube in the
dth dimension.

The fastest-varying dimension (z-dimension) of the data cube as it is stored
in the linear buffer will be the fastest-varying dimension of the ALPScube ; no
transposition is performed by this function (i.e. the ALSPcube’s permute vector
has no effect on the distribution of the data in this function).

Return Valués:

Returns the new ALPScube. In case of error, program execution is halted.

49

2.3.2 Creating a ”blank” cube

ALPScube MakeCube(int z, int zb, int y, int yb, mt z, int 2b, char
*cDefStr, MPI_Comm totalComm)

The MakeCube function will return a pointer to a new ALPScube with the
necessary memory space allocated. The

Parameters:

s = length of the global data cube’s x dimension.

¥: length of the global data cube’s y dimension.

z: length of the global data cube’s z dimension.
e zb: blocksize for the x-dimension.
o yb: blocksize for the y-dimension.
e zb: blogksize for the z-dimension.

o cDefStr: pointer to string specifying the desired ALPScube type of the
new ALPScube.

o totalComm: MPI communicator created by MakeCubeComm.

If a blocksize for any given dimension is zero, then the actual blocksize used
will be [£], where z is the length of the data matrix and P is the number of
processes in that dimension.

Return Values:

Returns the new ALPScube. In case of error, program execution is halted.

2.4 Retrieve an ALPScube into a linear array

void *CollCube(ALPScube totalCube)

This function collects the distributed data into a linear unblocked array on

the root processor (the processor with a rank of 0). The array buffer space is
allocated by the function.

Parameters:

e totalCube: the ALPScube to be collected into a single buffer.

Return Values:

On the root processor, the function returns a pointer to the linear array.
On the remaining processors, the function returns the NULL value.

50

2.5 Reading and Writing ALPScubes from/to
disk
int WriteCube(char *filestem, ALPScube totalCube)

This function saves the distributed data in an ALPScube into a single file. The
file format is is a proprietary format (Parallel Data Cube, or PDC) for storing
information about the ALPScube as well as the data itself.

The function automatically appends the extension ”.pdc” to the specified
filename.

Parameters:
o filestem: pointer to string specifying the filename.

e totalCube: the ALPScube to be written to a file.

ALPScube ReadCube(char * filestem, int bz, int by, int bz, MPI_Comm
totalCommy -

This function reads sthe ALPScube stored in the specified- file (excluding the
”.pdc” extension). and. distributes: the: datz. in block:cyclic-format: to- ali‘ the: -
calling processes in totalComm.

Parameters:
. filestem: pointer to string specifying the filename.
s zb: blocksize for the x-dimension.
e yb: blocksize for the y-dimension.
e zb: blocksize for the z-dimension.

o totalComm: MPI communicator that specifies the processor mesh.
If a blocksize for any given dimension is zero, then the actual blocksize will

be computed as [%], where z is the length of the data matrix and P is the
number of processes in that dimension.

Return Values:

Returns the new ALPScube. In case of error, program execution is halted.

51

2.6 Redistributing an ALPScube over a differ-
ent number of processors

The process cube upon which an ALPScube is distributed can be decreased in
number of processors using ManyToFew1d for linear process cubes (only one
of the three dimensions of the process cube has a length greater than one). For
general 3-d process cubes, ManyToFew can be utilized.

2.6.1 Reducing the number of processors
ALPScube ManyToFewld{(ALPScube totalCube, int numProcs)

The ManyToFew1d function creates a new ALPScube that occupies a smaller
subset of the processor topology occupied. Both the old and new process cubes
must be linear, i.e. have length only in one dimension. The new length of the
long dimension is shortened to the value of numProcs. The data cube will be
redistributed with maximal blocking (insert equation) in all dimensions.

All processors that belong to totalCube must call the ManyToFewld func-
tion.

Parameters:

o totalCube: ALPScube to be redistributed.

o numProcs: The new (shorter) length of the processor array.

Return Values:

Those processors that belong to the new subset of processors will be returned
the new ALPScube. This ALPScube will have a new communicator that only in-
cludes the processors belonging to the new subset of processors. The processors
that do not belong to the new subset will be returned the NULL value.

ALPScube ManyToFew(ALPScube totalCube, int numProcsX, int numProcsY,
int numProcsZ, MPI_Comm *pnewcomm)

The ManyToFew function creates a new ALPScube that occupies a subset
of the occupied process cube. The parameters numprocsX, numProcsY, and
numProcsZ specify the lengths of the new, smaller, process cube. The data
cube will be redistributed in block distribution format in all dimensions. The
optional paranieter pnewcomm is a pointer to an MPI_Comm variable that will
contain the new communicator of which the calling process is a member. All
processors that belong to totelCube must call the ManyToFew function.

Parameters:

o totalCube: ALPScube to be redistributed.

52

e numProcsX: The new length of the process cube’s x-dimension.
e numProcsY: The new length of the process cube’s y-dimension.
o numProcsZ: The new length of the process cube’s z-dimension.

® pnewcomm: optiozial pointer to MPI.Comm variable.

Return Values:

Those processors that belong to the new subset of processors will be returned
the new ALPScube. This ALPScube will have a new communicator that only
includes the processors belonging to the new subset of processors.

The processors that do not belong to the new subset form a separate subsét
which is assigned a new communicator (this communicator will not have Carte-
sian coordinates associated with its members). These processors are returned
the NULL value. In any case, if the parameter pnewcomm is supplied, this
variable will contain the new communicator that the processor belongs to.

Example of ManyToFew

Figure 2.4 illustrates the-use of ManyToFew- on a-data cube with a process
cube of dimensions (2;° 3; 4} -Figure 2:4{b} shows the riew- process cube with
dimensions (1, 2, 3). The ordering of the data is contiguous along each dimen-
sion. Figure 2.4(c) illustrates the prczessors from the original process cube that
are not members of the new process cube.

53

. - -
@
77, R NNN 2
XA TEINNNNN 2
2% SRR NNNN 2
P VA eVt BRNINRRN g
<] r P L L L L LYY
5 Rt iy b,
ey
2
™ =
.m m TL ~
6] ‘XA ’\u N\N 8 su VNN ”
8 27385 RBNNNN = flL .
A GO BBNNNN o
AR BRNNNN < 1
3 m ~d. -
g
Ll m rl
o Y
~ 2
]
&
2 g
N (=] s
©
= > =
<

54

(c) Excluded emptj processors
Figure 2.4: Graphic illustration of ManyToFew

2.6.2 Increasing the number of processors

The process cube upon which an ALPScube is distributed can be increased in
size using FewToMany1d for linear process cubes only (only one of the three
dimensions of the process cube has a length greater than one). For general 3-d
process cubes, FewToMany can be utilized, with much faster performance.

ALPScube FewToManyld(ALPScube origCube, MPI_Comm newComm)

The FewToMany1d function does the opposite of ManyToFew1d - it creates

a new ALPScube by redistributing origCube onto a greater number of proces-

sors. Both the old and new process cubes must be linear, i.e. have length only

in one dimension. The new topology is given by the new communicator new-

Comm. All the processors that belong to newComm must call this function.

Processors that do not belong to the original ALPScube must set origCube to -
NULL. All processors that belong to the original cube must belong to the new

communicator newComm as well, and their processor coordinates must be the

same in origCube’s communicator as in newComm.

Parameters:
o origCube: ALPScube to be redistributed.

e newComm: MPI Communicator specifying new processor array.

Return Values:
The function returns the new ALPScube.

ALPScube FewToMany(ALPScube origCube, MPI_Comm newComm)

The FewToMany function can expand in all dimensions simultaneously, and is
not restricted to linear process cubes. The new process cube is specified by the
communicator newComm. All the processors that belong to newComm must
call this function. Processors that do not belong to the original ALPScube
must set totalCube to NULL. All processors that belong to the original cube
must belong to the new communicator newComm as well, and their processor
coordinates must be the same in totelCube’s communicator as in newComm.
Parameters:

o origCube? ALPScube to be redistributed.

e newComm: MPI Communicator specifying new process cube.

Return Values:

The function returns the new ALPScube.

55

NN SINNES
NN NN N
NN NN
F\Q NN
l S, \;\\; ;
l E;: . E¢ 'y

AN
XAVN
VA AN
VYA

Figure 2.5: FewToMany used to create larger process cube

Example of FewToMany

Figure 2.5 illustrates the use of FewToMany to enlarge the process cube of the
data cube shown in- Figure 2.4(a). The new. process cube has dimensions (4, 6,
6). Note that the X-Y plane of processes at the end of the Z axis has less data
than the others, due to the nature of the block distribution pattern.

56

2.7 Transposition, Reblocking, and conversion
between cube types

2.7.1 TransCube for block-cyclic ALPScubes
ALPScube TransCube(ALPScube totalCube, char *newType, int *bs)

The TransCube function creates a new ALPScube with ALPScube type new-
Type (see section 2.2.6) and the data from totalCube.

This effectively allows the user to perform transposition on an ALPScube
and/or reblocking on totalCube. Transposition is accomplished by specifying
the new cube type newType that has the same datatype as totalCube, but a
different orientation of the axes with respect to totalCube’s axes.

If newType has the same permute vector as the original, then no transposition
will be performed. If newType is NULL, totalCube’s cube type will be used. If
the user wishes to reblock without transposing, newType should be NULL.

Reblocking is accomplished by specifying the desired new blocksizes as an
array bs, a pointer to an array of 3 integers, where each blocksize corresponds
to the new eube’s axes (i.e. bs[0] is the blocksize for the new cube’s x-axis,
and so forth). If bs is NULL, then totalCube’s block sizes will be used instead.
In_this. case, the blocksize. vector. will not. be permuted: to correspond to the
transposed matrices axes; i.e. the x dimension’s blocksize in totalCube will
be the x dimension’s blocksize in the transposed cube regardless of it’s axis
permutation.

If a blocksize bs[d] is zero for any given dimension d, then the actual block-
size used will be bs{d] = [ﬁ"ﬁlﬂ], where P is the number of processes in that
dimension.

Parameters:

e totalCube: ALPScube to be transposed and/or reblocked.

o newType: string specifying the desired ALPScube type of the new ALP-
Scube.

e bs: pointer to array of three integers specifying new blocksizes.

Return Values:

The function returns the new ALPScube.

Example of TransCube

Figure 2.6 illustrates the use of TransCube on a data cube with dimensions
(8, 9, 5) on a process cube of dimensions (2, 3, 1). Figure 2.6(a) shows the new
data cube with dimensions (9, 5, 8). The datais dlstnbuted in block-distribution
fashion for both cubes.

57

(a)-Initial Data.Cube...- .. -

AN \\\\I\\\\ '\\\"

(b) TransCube used to transpose data cube

Figure 2.6: Graphic illustration of TransCube

58

2.7.2 TransAnyCube for non-block-cyclic ALPScubes
ALPScube TransAnyCube(ALPScube totalCube, char *newType, int *bs)

This function behaves the same as TransCube, except that it can take as input

an ALPScube which is not distributed in block-cyclic fashion, but in a contigu-

ous yet irregular fashion in each dimension. Such an ALPScube may possibly be

created by JoinCube. This function requires more overhead processing than

TransCube, and should be used only for ALPScubes which require it. '
The new ALPScube will be distributed in block-cyclic format.

Parameters:
o totalCube: ALPScube to be transposed and/or reblocked.

e newType: string specifying the new ALPScube type of the new ALPScube.

e bs: pointer to array of three integers specifying new blocksizes.

Return Values:

The function returns the new ALPScube.. -

2.7.3 TransCubeResize for resizing the process cube

ALPScube TransCtibeResize(ALPScube totalCube, char *newType, int
*bs, MPI_Comm ezpandedComm, int *numProcs, MPI Comm *pnewcomm

)

This version of TransCube has several extra features. It allows the user to
expand or reduce the number of processors that the new ALPScube will occupy.
Its behavior is determined as follows:

1. If the MPI communicator ezpandedComm is provided, then ezpended-
Comm serves exactly the same role as newComm in FewToMany, and
the result is the same as for FewToMany, except that transposition and
reblocking can also be accomplished simultaneously.

2. If ezpandedComm is NULL, but numProcs is not NULL, then numProcs
is an array of three integers specifying the dimensions of the process cube.
The result is exactly the same as that of ManyToFew, except that trans-
position and reblocking can also be done simultaneously.

Parameters:

o totalCube: ALPScube to be transposed and/or reblocked.
o newType: string specifying the new ALPScube type of the new ALPScube.

s bs: pointer to array of three integers specifying new blocksizes.

59

o ezpandedComm: MPI Communicator specifying new (larger) process cube.

e numProcs: array of three integers specifying the lengths of the new (smaller)
process cube’s dimensions.

* pnewcomm: optional pointer to MPI_.Comm variable.

Return Values:

" Those processors that belong to the new set of processors will be returned
the new ALPScube. This ALPScube will have a new communicator that only
includes the processors belonging to the new set of processors.

If the new ALPScube occupies a smaller process cube, then he processors
that do not belong to the new subset form a separate subset which is assigned
a new communicator (this communicator will not have Cartesian coordinates
associated with its members). These processors are returned the NULL value.
In any case, if the parameter pnewcomm is supplied, this variable will contain
the new communicator that the processor belongs to.

2.8 Dividing an ALPScube into smaller ALP-
Scubes

ALPScube *SplitCube(ALPScube totalCube, int numPieces, int sdim)

SplitCube divides totalCube into equal-sized new ‘ALPScubes, along a single
dimension sdim of the ALPScube totalCube. The number of subpieces is given
by numPieces. The cube is "cut” by planes that are orthogonal to the specified
dimension sdim. The parameter sdim is either 0, 1, or 2, specifying the slowest-
varying, middle, and fastest varying dimensions, respectively.

numPieces must be either an integral multiple or factor of the number of
processors in the process cube. The function returns a pointer to a NULL-
terminated array of ALPScubes. Each new ALPScube will have the same block-
ing parameters as totalCube.

Let P be the length of the process cube along the sdim dimension. There
are two cases: '

1. In the case that numPieces is an integer multiple of the number of pro-
cessors P, then

numPieces = k ¥ P

where k ‘is an integer. In this case, each processor’s local portion of
the data cube will be subdivided into k pieces of equal length along the
sdim dimension, and thus create k separate ALPScubes on each processor.
Each ALPScube will reside completely within the confines of its process.

SplitCube will return a NULL-terminated pointer to an array of k¥ ALP-
Scubes.

60

2. In the case that numPieces is an integral factor of P, then
numPiecesxk = P

where k is an integer. In this case, each new ALPScube will occupy k
processors along the sdim dimension. SplitCube will return a NULL-
terminated array containing only the one ALPScube that the process be-
longs to.

Parameters:
e totalCube: ALPScube to be split. Process cube must be linear.
e numPieces: number of pieces to split ALPScube into.

e sdim: An integer value of 0, 1 or 2, specifying the x, y, or z dimension,
respectively, that will be cut by the subdivisions.

Return Values:

'The function returns a NULL-terminated array of ALPScubes (even if there is
only one-ALPSeube-in-the array).-

Example

In figure 2.7, an illustration of a data cube is shown being split into its subparts.
Figure 2.7(a) shows the initial data cube. The dark heavy lines indicate process
boundaries, while the light thin lines indicate individual data element bound-
aries. The data cube has dimension lengths (4, 12, 16) and occupies a process
cube with dimensio ns (2, 3, 4). SplitCube is first used to split the cube into
8 new cubes alon g the second axis (figure 2.7(b)). The resulting cubes each
occupy a process cube of (2, 3, 1), with two cubes occupying each processor.
The actual data still resides on the same processors as in the original cube.

Figure 2.7(c) shows the results of creating 2 new cubes along the Z axis.
Each new cube occupies a process cube with dimensions (2, 3, 2).

61

]
7]

»«-«ql/:/ '_[3

o
%

TP,

7.

osefeleleiel,
<
\

1~

o
2

LN Bl i
N

5
24
X
2
z

%S
2
>

N X

5
XSS

2
7
",

PO

e,

(50 50

\\\\\\\\‘g\

L L
\(’I

*(c) SplitCube3d used to create 2 new Cubes along Z axis

Figure 2.7: Graphic illustration of SplitCube3d

62

2.9 Combine Multiple ALPScubes into a single
ALPScube

ALPScube JoinCube(ALPScube *cubeList, int jdim, MPI_Comm total-
Comm)

This function creates a new ALPScube by copying the data from smaller ALP-
Scubes into a single matrix. cubeList must be a NULL-terminated array of
ALPScubes. The local portions of each ALPScube in the array are joined to
form the local portion of the new ALPScube.

The parameter jdim specifies the axis corresponding to the dlrectlon in which
the ALPScubes are joined.

The MPI communicator totalComm specifies the process cube of the new
ALPScube. This ultimately specifies how the individual ALPScubes will be
joined. The Cartesian coordinates of each process can be specified utilizing
MPI functions, thus allowing an arbitrary ordering of processors. .

The new ALSPcube will have the blocksizes of the mput ALPSCube that is
occupying the root processor.

However, there is a possible exceptmn to this rule. If the new ALPScube
does not happen to fit the standard block-cyclic distribution pattern defined by
the blocksizes obtained as mentioned ahave, then each.process. will set. the new. .
blocksize to its local dimension length. This is a special case that signifies that
the new ALPScube is not distributed in block-cyclic fashion, and each process’s
portion of the data matrix may possibly vary in length from process to process.
The assumption is made that the data is not cyclic, but contiguously distributed.
The alternative command JoinAnyCube is the same as JoinCube except
that it takes an extra parameter, which when set to 1, will always set the new
blocksize on each processor to the local dimension length. This is useful to avoid
the possibility of accidently having an incorrect blocksize resulting by joining
together datacubes that were created independently of each other.

In this case, the resultant data cube must first be reblocked. A special version
of TransCube, TransAnyCube, should be used to reblock the resultant cube
as desired before any other function is allowed to process it. TransAnyCube
takes the same parameters as TransCube.

Parameters:

o cubeList: ALPScube to be split.

e jdim: An integer value of 0, 1 or 2, specifying the x, y, or z dimension,
respectively, along which the ALPScubes will be joined.

e totalComm: MPI communicator specifying the new ALPScube’s process
cube. Must be linear (have length in only one dimension).

63

Return Values:
The function returns the new ALPScube.

ALPScube JoinCube(ALPScube *cubeList, int jdim, MPI.Comm total-
Comm)

Parameters:

e cubeList: ALPScube to be split.

e jdim: An integer value of 0, 1 or 2, specifying the x, y, or z dimension,
respectively, along which the ALPScubes will be joined.

e totelComm: MPI communicator specifying the new ALPScube’s process
cube. Must be linear (have length in only one dimension).

o IgnoreBlockSize: there are two choices:

0: works the same as JoinCube.

1: sets blocksize on each processor to local dimension length (where
dimension.-is jdim). ..

2.10 Split ALPScube into overlapping ALPScubés

SplitStaggeredCube and RRSplitStaggeredCube split an ALPScube:into.
a sequence of subcubes that overlap in the Oth dimension. They work by first
transposing the input cube in the same fashion that TransCube would if it
were called with the newType parameter and with new blocksizes of {0,0,0},
but with the important difference that some data elements are duplicated in or-
der to create subcubes that overlap in the Oth dimension of the new subcubes.
TransStaggeredCube is utilized to accomplish the duplication and distribu-
tion of data; the two functions mentioned above extend this functionality by
also splitting the data into subcubes. They differ in the order in which the
subcubes are distributed.

The new cubes overlap in the Oth dimension (slowest-varying or outermost)
of the new cubetype’s orientation (see section 2.2.6).

2.10.1 Consecutive distribution of subcubes

ALPScubelList SplitStaggeredCube(ALPScube totalCube, char -*new-
Type, int offset, int overlap, int duplicate, int wraparound)

The subcubes are distributed such that consecutive cubes on each processor are

ordered consecutively by their dimension indices. This is illustrated in figure
2.8.

64

-

Each subcube will have dimensions {(overlap+offset), DimLength(1], Dim-
Length([2]}, where DimLength[1] and DimLength{2] are the lengths of the non-
staggered dimensions. The outermost dimension of each subcube in the sequence
overlaps the following subcube by overlap elements.

See figure 2.9 for an illustrated example. As shown, the sequence of new
ALPScubes are distributed across the length of the process cube in the Oth
dimension.

=10

[olalz]2]elslel71 o] 2]

[5]
Offser=l Ovexrlap=d
g,

total mwber of blocks » | L SYeriee
offsat

blocks_per_processor = Lo overiee,
oftaet*P

p_oftsst = blocke pat.DEocesscr .. offset .

Figure 2.8: Consecutive overlapping distribution

Parameters:
e totalCube: ALPScube to be redistributed and split.
o newType: string specifying the new ALPScube type of the new ALPScube.

e offset: integer specifying distance between the first elements in the outer-
most dimension of consecutive new subcubes.

e overlap: integer specifying the number of overlapping elements in the out-
ermost dimension of consecutive subcubes.

o duplicate:

0 if subcubes on the same processor are to share data in memory. Data
elements that are shared by two or more subcubes utilize a single copy
of the data in memory. Overwriting such elements in one subcube
will affect all subcubes that share data.

1 if subcubes are to have separate copies of shared data elements. This
option consumes more memory space but allows the data elements
in a subcube to be overwritten without affecting other subcubes.

o wraparound:

65

0 denotes no wraparound of outermost dimension.

-1 causes the outermost dimension to wrap around, such that the last

subcube’s outermost dimension begins with the last element in the
outermost dimension.

Any value greater than zero causes the outermost dimension to wrap
around by the value specified.

RARTW RAA N RRERY

(b) Offset=1, overlap=2, no wraparound

2
3:4}
N
Y
¢
RS}
B
&7
=/
v
5
¥
N

(c) Offset=1, overlap=2, with wraparound

Figure 2.9: Mlustration of SplitStaggerCube

66

b _amame

Return Values:

The function returns a structure of type ALPScubeList which contains three
elements:

e cube: pointer to NULL-terminated array of ALPScubes (even if there is
only one ALPScube in the array).

e numCubes: integer specifying number of ALPScubes in array.

e comm: MPI communicator of original ALPScube.

2.10.2 Round-robin distribution of subcubes

ALPScubeList RRSplitStaggeredCube(ALPScube totalCube, char *new-
Type, int offset, int overlap, int wraparound)

This function works identical to SplitStaggeredCube except that the sub-
*cubes are distributed in round-robin fashion across the processors, rather than
consecutively. See figure 2.10. This function lacks the duplicate parameter since
it is not applicable to this manner of distribution.

L=30.

I EE SN A Y Y X T

&=
offsetal Overlap=4
—~—

................................

[o o S S e i T T

total number of blocks » | 2 -.9verip
offset

blocks_per. . L - overlap
offset+p

Figure 2.10: Round-robin overlapping distribution

Parameters:

totalCube; ALPScube to be redistributed and split.
o newType: string specifying the new ALPScube type of the new ALPScube.

o offset: integer specifying distance between the first elements in the outer-
most dimension of consecutive new subcubes.

o overlap: integer specifying the number of overlapping elements in the out-
ermost dimension of consecutive subcubes.

67

e wraparound:

0 denotes no wraparound of outermost dimension.

-1 causes the outermost dimension to wrap around, such that the last
subcube’s outermost dimension begins with the last element in the
outermost dimension.

Any value greater than zero causes the outermost dimension to wrap
around by the value specified.

Return Values:

The function returns a structure of type ALPScubeList which contains three
elements:

e cube: pointer to NULL-terminated array of ALPScubes (even if there is
only one ALPScube in the array).

¢ numCubes: integer specifying number of ALPScubes in array.

e comm: MPI communicator of original ALPScube.

2.10:3- overlapping- distribution of dxx -

ALPScube TransStaggeredCube(ALPScube totalCube, char *newType,
int *newBS, int overlap, int wraparound)

This function redistributes the data in the same fashion as RRSplitStaggered-
Cube, except that the result is contained in a single distributed datacube rather
than split into subcubes. This function provides the data duplication and redis-
tribution functionality for the SplitStaggeredCube and RRSplitStaggered-
Cube functions. Note that this function accepts an array of new blocksizes for
all dimensions: the blocksize for the oth dimension is in fact the offset pa-
rameter. The other two dimensions are distributed in the same manner as for
TransCube. See figure 2.11 for an illustration in the single dimension.

Parameters:
o totalCube: ALPScube to be redistributed.
o newType: string specifying the new ALPScube type of the new ALPScube.

e newBS: pointer to array of three integers specifying new blocksizes. newBS[0]
specifies the offset for the Oth dimension. in the outermost dimension of
consecutive new subcubes.

e overlap: integer specifying the number of overlapping elements in the out-
ermost dimension of consecutive subcubes.

e wraparound:

68

L=10

[ol 1[2]3]a]s[e]7] 8[9]

Offset=1 Overlap=4
= P e

oj1]2]31413}14]5]6]7
11 2 3 4 5 a 5 6 7 8 Three processors

P=3
2| 3)4|516|5(6]7}]8}29

Figure 2.11: Pattern of overlapping distribution

0 denotes no wraparound of outermost dimension.

Any value greater than zero causes the outermost dimension to wrap -
around by the. value specified.
Return Values:

The function returns a new ALPScube.

2.11 Reorganize Cube Data
ALPScube *ReCube(ALPScube *cubeList, int dim)

ReCube reorganizes a list of ALPScubes as follows: First it does the equiv-
alent of SplitCube on each input cube, splitting it along dimension dim into
DimLength pieces, where DimLength is the length of dimension dim. Each piece
is effectively a two-dimensional ALPScube, or a ”plane.”

The firstmost planes resulting from all the SplitCube operations are then
joined together along dimension dim to form the first output ALPScube; next,
the secondmost plane from each SplitCube operation is joined together, and so
forth. In this manner a list of ALPScubes are created and returned as output.
Refer to the illustrated example in figure 2.12.

e cubeList:-pointer to array of ALPScubes.

e dim: dimension along which to split and join cubes.

Return Values:

The function returns a NULL-terminated array of ALPScubes (even if there is
only one ALPScube in the array).

69

&

&
L]
-3
]
&
-]
]
]
]
»
RS
L3
s

(b)-Result of ReCube.

Figure 2.12: ReCube

2.12 Duplicate ALPScube

ALPScube CopyCube(ALPScube *origCube)
This function creates a duplicate of the specified ALPScube.

Parameters:

e origCube: ALPScube to be duplicated.

Return Values:

The function returns the new ALPScube.

70

Chapter 3

ALPScube Matlab

functions

3.1 Introduction

This chapter describes:a collection of Matlab: functions for reading; writing; amnd:
creating ALPS dita cubes.

3.2 Read an ALPScube pdc file into Matlab

[cube, cdefstr, cond] = mat_readcube(file)

In order to return the results of ALPS-based applications on parallel machines
to a uniprocessor workstation for verification, mat_readcube.m allows the user
to read a .pdc file generated on a multiprocessor platform and create the ap-
propriate parallel data cube in MATLAB. The use of this function has allowed
many results on the Intel Paragon and IBM SP2 to be verified using the original
MATLAB prototypes.

A key feature of mat_readcube.m is that it performs data permutation on
the data contained in the .pdc file such that it returns to ”canonical form”
(orientation = [0 1 2]). When data are read into MATLAB, they are permuted
into this form so that a single MATLAB prototype can operate on data from
any orientation on the parallel machine.

Input Parameters:

e it file: a string specifying the file name. The ’.pdc’ suffix will automatically
be added.

Output Parameters:

e cube: the 3D data cube.

71

® cdef str: a string containing the cube type definition of the cube. It must
refer to a valid entry in the parallel cube definition file (e.g. stap.fmt).

e cond: 0 on successful completion, 1 on failure.

3.3 Write an ALPScube pdc file from Matlab

cond = mat_writecube(cube, file, cdef_str)

The counterpart to mat_readcube.m, mat_writecube.m allows a three-dimensional
data array in MATLAB to be written as a .pdc file for transfer to a parallel

platform. The ALPStype must be specified to ensure the correct orientation of
the data on the parallel machine.

Input Parameters:

e itfile: a string specifying the file name. The ’.pdc’ suffix will automatically
be added.

o cube: the 3D data cube.

« edef sir- arstring combaining the cube type. definition.of the cube. It must
refer to a valid entry in the parallel cube definition file (e.g. stap.fmt).

Output Parameters:

e cond: 0 on successful completion, 1 on failure.

3.3.1 MATLAB Canonical Orientation

The canonical orientation for ALPS datacubes in MATLAB is [01 2] (Range_Chan_Pri).
When .pdc files are read using mat_readcube the resultant data matrix is trans-

posed to this orientation. This provides the convenience that a single matlab
routine can process data from any .pdc file, regardless of orientation. When
mat_writecube is called, the orientation for the .pdc file is specified in the cube
definition, resulting in a different orientation for ALPS parallel routines. Should

one want to defeat the convenience of mat_readcube reading all files into canon-

ical form, one may use mat readtrue, which does not perform the permutation,

and thus reads a non-transposed image of what is in a .pdc file.

3.4 Disﬁlay contents of ALPScube

mat_printcube(cube, indez_mode, wait)

It is desirable to have a standard output format for the contents of an ALPScube.
In MATLAB, mat_printcube.m provides this output. It supports either the C
(0 to (n-1)) o MATLAB (1 to n) numbering conventions.

72

Input Parameters:
o cube: The data cube to be printed.

o indez_mode: boolean argument determining indexing mode used in output.
0 for C indexing (dims start at 0), 1 for actual MATLAB indexing (dims
start at 1).

e wait: A boolean argument determining whether to pause between ele-
ments. 0 for no pause, 1 for pause.

cpr(num, pre_str)
rpr(num, pre_str)
ipr(num, pre_str)
Pretty-printing functions for complex, real, and integer numbers are handled by
cpr.m, rpr.m, and ipr.m, respectively. They also form the basis for mat_printcube.m.
Input Paraineters:
o num: The pumber to-be printed: -
" e pre_str: A string to precede the value of the number. (will print no
string).

Output Parameters:

e None.

3.5 Create ALPScube with data entries that iden-
tify coordinates of each entry

cond = mat_labelcube(file, cdef_str, dim)

This function creates a three-dimensional parallel datacube of specified size with
the following property: The value at each element is an encoded representation
of its three-dimensional global index. Six digits are used as a triplet of two-digit
indices, one for each of the three dimensions. For example, in a Range_Chan_Pri
cube (of type real), the element at Range 12, Channel 4, and PRI 7 would
contain the value 0.120407. This method of created labeled data is particularly
useful in examining data flow in communication algorithms, as the original
location of data can be deduced from its value. As two-digit fields are used to
encode the indices, the maximum extent of any dimension is 99. This should be
sufficient to produce datacubes for algorithmic development and verification.

73

Input Parameters:

o it file: a string specifying the file name. The ’.pdc’ suffix will automatically
be added.

* cdef_str: a string containing the cube type definition of the cube. It must
refer to a valid entry in the parallel cube definition file (e.g. stap.fmt).

e dim: an array of three integers specifying the dimension lengths of the
global three dimensional data matrix.

Output Parameters:

¢ cond: 0 on successful completion, 1 on failure.

3.6 Create ALPScube with random data entries

cond = mat_randcube(file, cdef str, dim)

As a means of testing both computational and communication modules in ALPS,
it is important to have.a means of producing randomized datasets. The func-
‘tion. mat randcube.m. creates a. parallel datac ube.of arbittary. size contaiiing .
randomized data of the type appropriate to the cube (real, complex, integer,
etc.).

Input Parameters:

e it file: a string specifying the file name. The ".pdc’ suffix will automatically
be added.

o cdef_str: a string containing the cube type definition of the cube. It must
refer to a valid entry in the parallel cube definition file (e.g. stap.fmt).

¢ dim: an array of three integers specifying the dimension lengths of the
global three dimensional data matrix.

Output Parameters:

e cond: 0 on successful completion, 1 on failure.

3.7 Retrieve information about an ALPScube
type definition

dt_str = lookup_def(def_str, attrib)

In order to manage the variety of ALPStypes defined in the libraries, a central
repository of information is kept. This specifies the data type, cube orientation,

74

and other information about the ALPStype. Many ALPS modules (both MAT-
LAB and parallel C) need to consult this repository. The MATLAB function
lookup_def.m is provided for this purpose.

Input Parameters:

e def_str: A string containing the name of the cube type definition.

e attrib: A string containing the requested attribute. It must be one of the
following:

1. MPI_Datatype (type of data stored)
2. permute (permutation from standard form)
3. desc (description of datatype)

4. local (boolean; 1 if vector is local)

Output Parameters:

e dt_str: ‘A string containing the datatype associated with the cube definition
def_str. If the cube definition cannot be found in the file, a null string is
returned. ' ' : '

cpr(num, pre_str)

rpr(num, pre_sir)

ipr(num, pre_str)

Pretty-printing functions for complex, real, and integer numbers are handled by
cpr.m, rpr.m, and ipr.m, respectively. They also form the basis for mat_printcube.m.
Input Parameters:

e num: The number to be printed.

e pre_str- A string to precede the value of the number. (” will print no
string). :

Output Parameters:

e None.

75

Chapter 4

Installation and
Configuration

4.1 Obtaining the Software

The source code can be obtained at the‘ web address:
http://www.ee.cornell.edu/"adamb/ALPScomm. tar.gz

This file can be downloaded with the aid of a web browser. Simply point
your browser to the address shown and download the file to your hard drive.
The file must first be decompressed using the gunzip utility:

gunzip ALPScomm.tar.gz

This results in a new file being created called ALPScomm.tar. Next, use
the tar command:

tar cvf ALPScomm.tar

This command will create a new subdirectory named ALPScomm with all the
relevant subdirectories and files within.

4.2 Creating the library files

The first step in installing the ALPS communication libraries’is to confirm the
site-specific paths for running imake in the site.def file stored in the directory
ALPScomm/config. Several current examples have been provided, including:

* site.def. CTCSP2 (IBM SP2 at the Cornell Theory Center)
e site.def. RomeParagon (Intel Paragon at the USAF Rome Laboratory)

Once the default file site.def is correct, follow the procedures outlined below.

76

4.2.1 Compilation on the SP2
To compile the on the IBM SP2, use the following imake command:
imake -I<CONFIGDIR> -DTOPDIR=<TOPDIR> -DSPXMIES -DCURDIR=.

where <CONFIGDIR> is the full pathname of the ALPScomm/config directory
and <TOPDIR> is the full pathname to the ALPScomm subdirectory. (With
the current directory being the one in which the ALPScomm subdirectory was
installed, use the unix command pwd to determine the full pathname of the
current directory.) '

Next, type the following command:

make World

This should produce both the libcube.a and libcomm.a libraries in the
directory ALPScomm/lib, as well as a group of test programs in the ALP-
Scomm/demo directory.

4.2.2 Compilation on the Intel Paragon
Similarly, to compile on.the. Intel Paragon, the imake command is: .
imake- ~I<CONFICDIR>" ~DTOPDTR=tvpdir--DPAROMT -DCURDIR=" -

again, where <CONFIGDIR> is the full pathname to the ALPScomm/config
directory and <TOPDIR> is the path to the ALPScomm directory, followed by
the command:

make World

This should produce both the libcube.a and libcomm.a libraries in the
directory ALPScomm/lib, as well as a group of test programs in the ALP-
Scomm/demo directory.

4.3 Setting the Environment

When running the ALPS communication libraries, a special environment vari-
able must be-set to indicate where the ALPStype information is stored, as it is
checked during runtime. This environment variable is CUBEDEFINITIONS,
and it would typically be set in a .cshrc file as follows:

setenv CUBEDEFINITIONS <DFPATH>

where <DFPATH> is the full pathname to the ALPScomm/dataformat di-
rectory in the ALPScomm distribution.

The ALPS communication libraries should be installable on any message-
passing parallel platform that has imake, ‘make, a parallel compiler, and a
current MPI distribution. The critical installation differences should be confined
to the site.def configuration file.

77

4.4 Writing C programs

In your C files, you must include the header file alpscube.h. The file is located
in the ALPScomm/include subdirectory.

The very first function call in your main(int arge, char argv) routine
should be Initialize(argec, argv). Also, before the program exits, the Finalize()
function should be called.

When compiling, you must include the path of the above include directory
as a compiler option.

When linking, include the path of the library directory ALPScomm/1ib, and
also the link options -1comm and -1lcube.

*U.S. GOVERNMENT PRINTING QFFICE: 2000-510-079-10001

78

DISTRIBUTION LIST

addresses nuaber
of copies

RALPH KOHLER 2
AFRL/JIFTLC

26 ELECTRONIC PKWY

ROME NY 134641-4514

CORNELL UNIVERSITY o 1
SCHOOL OF ELECTRICAL ENGINEERIMSG

335 FRANK H.T. RHODES HALL

ITHACA NY 14853-3301

AFRL/IFOIL , 1
TECHNICAL LIBRARY

26 ELECTRONIL PKXY

ROME NY 13441-4514

ATTENTION: DTIC-0C(1
DEFENSE TECHNICAL INFO CENTER

8725 JOHN J. KINGMAN RDAD, STE 0944

FT. BELVOIR, VA 220460-62138

DEFENSE ADVANCED RESEARCH 1
PROJECTS AGENCY

3701 NORTH FAIRFAX DRIVE

ARLINGTON VA 22203-1714

ATTN: NAN PFRIMMER 1
IIT RESEARCH INSTITUTE

201 MILL 5T.

ROME, NY 13440

. AFIT ACADEMIC LIBRARY 1
AFIT/LDR, 2950 P.STREET
AREA 8, BLDG 642

¢ WRIGHT-PATTERSON AF3 OH 45433-7755

ATTN: SMDC IH PL 1
US ARMY SPACE § MISSILE DEF CMD

P.0. BOX 1500

HUNTSVILLE AL 35807-3801

DL-1

TECHNICAL LIBRARY DO274(PL~T3)
SPAWARSYSCEN

53560 HULL 35T.

SAN DIEGO CA 92152-5001

COMMANDER, CODE &4TLGOOD
TECHNICAL LIBRARY, NAWC=-WD
1 ADMINISTRATION CIRCLE
CHINA LAKE CA 93555-6100

COR, US ARMY AVIATION % MISSILE CMD
REDSTONE SCIENTIFIC INFORMATION CTR
ATTN: AMSAM-RD-0B-R, (DOCUMENTS)
REDSTONE ARSENAL AL 35898-5000

REPORT LIBRARY

MS P364 .
LOS ALAMOS NATIONAL LABORATORY
LOS ALAMOS NM 87545

AFIWC/MSY
102 HALL BLVD, S3TE 315
SAN ANTONIO TX 78243-7016

USAF/AIR FORCE RESEARCH LABORATORY
AFRL/VSOSA(LIBRARY-BLDG 1103)

5 WRIGHT DRIVE

HANSCOM AFR MA 01731-3004

ATTN: EILEEN LADUKE/D460
MITRE CORPORATION

202 BURLINGTON RD

BEDFORD MA 01730

OUSD(P)/DTSA/DUTD

ATTN: PATRICK G. SULLIVAN, JR.
400 ARMY NAVY DRIVE

SUITE 300

ARLINGTON VA 22202

oL=-2

" MISSION
OF
AFRL/INFORMATION DIRECTORATE (IF)

The advancement and application of information systems science and
technology for aerospace command and control and its transition to air,
space, and ground systems to meet customer needs in the areas of Global
Awareness, Dynamic Planning and Execution, and Global Information
Exchange is the focus of this AFRL organization. The directorate’s areas
of investigation include a broad spectrum of information and fusion,
communication, collaborative environment and modeling and simulation,
defensive information warfare, and intelligent information systems

t‘eéhnologies.

